The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP(75). Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (Delta ppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, Delta ppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of Delta ppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.
Corynebacterium glutamicum accumulates up to 300 mM of inorganic polyphosphate (PolyP) in the cytosol or in granules. The gene products of cg0488 (ppx1) and cg1115 (ppx2) were shown to be active as exopolyphosphatases (PPX), as overexpression of either gene resulted in higher exopolyphosphatase activities in crude extracts and deletion of either gene with lower activities than those of the wild-type strain. PPX1 and PPX2 from C. glutamicum share only 25% identical amino acids and belong to different protein groups, which are distinct from enterobacterial, archaeal, and yeast exopolyphosphatases. In comparison to that in the wild type, more intracellular PolyP accumulated in the ⌬ppx1 and ⌬ppx2 deletion mutations but less when either ppx1 or ppx2 was overexpressed. When C. glutamicum was shifted from phosphate-rich to phosphate-limiting conditions, a growth advantage of the deletion mutants and a growth disadvantage of the overexpression strains compared to the wild type were observed. Growth experiments, exopolyphosphatase activities, and intracellular PolyP concentrations revealed PPX2 as being a major exopolyphosphatase from C. glutamicum. PPX2His was purified to homogeneity and shown to be active as a monomer. The enzyme required Mg 2؉ or Mn 2؉ cations but was inhibited by millimolar concentrations of Mg 2؉ , Mn 2؉ , and Ca 2؉ . PPX2 from C. glutamicum was active with short-chain polyphosphates, even accepting pyrophosphate, and was inhibited by nucleoside triphosphates.
Volutin granules are intracellular storages of complexed inorganic polyphosphate (poly P). Histochemical staining procedures differentiate between pathogenic corynebacteria such as Corynebacterum diphtheriae (containing volutin) and non-pathogenic species, such as C. glutamicum. Here we report that strains ATCC13032 and MH20-22B of the non-pathogenic C. glutamicum also formed subcellular entities (18-37% of the total cell volume) that had the typical characteristics of volutin granules: (i) volutin staining, (ii) green UV fluorescence when stained with 4',6-diamidino-2-phenylindole, (iii) electron-dense and rich in phosphorus when determined with transmission electron microscopy and X-ray microanalysis, and (iv) 31P NMR poly P resonances of isolated granules dissolved in EDTA. MgCl2 addition to the growth medium stimulated granule formation but did not effect expression of genes involved in poly P metabolism. Granular volutin fractions from lysed cells contained polyphosphate glucokinase as detected by SDS-PAGE/MALDI-TOF, indicating that this poly P metabolizing enzyme is present also in intact poly P granules. The results suggest that formation of volutin is a more widespread phenomenon than generally accepted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.