SummaryThe filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
SUMMARYStomatal closure is known to be associated with early defence responses of plant cells triggered by microbeassociated molecular patterns (MAMPs). However, the molecular mechanisms underlying these guard-cell responses have not yet been elucidated. We therefore studied pathogen-induced changes in ion channel activity in Hordeum vulgare guard cells. Barley mildew (Blumeria graminis) hyphae growing on leaves inhibited light-induced stomatal opening, starting at 9 h after inoculation, when appressoria had developed. Alternatively, stomatal closure was induced by nano-infusion of chitosan via open stomata into the substomatal cavity. Experiments using intracellular double-barreled micro-electrodes revealed that mildew stimulated S-type (slow) anion channels in guard cells. These channels enable the efflux of anions from guard cells and also promote K + extrusion by altering the plasma membrane potential. Stimulation of S-type anion channels was also provoked by nano-infusion of chitosan. These data suggest that MAMPs of mildew hyphae penetrating the cuticle provoke activation of S-type anion channels in guard cells. In response, guard cells extrude K + salts, resulting in stomatal closure. Plasma membrane anion channels probably represent general targets of MAMP signaling in plants, as these elicitors depolarize the plasma membrane of various cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.