Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity.
For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (∼20,000), African American (∼9,000), American Indian (∼6,000), Mexican American/Hispanic (∼2,500), Japanese/East Asian (∼690), and Pacific Islander/Native Hawaiian (∼175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.
Dietary factors influence the development of cardiovascular disease (CVD). The diet of Alaskan Eskimos differs from that of other populations. We surveyed Eskimo adults in Northwest Alaska to document their usual dietary intakes, differences based on gender and age, and sources of selected nutrients, and to generate appropriate dietary advice to reduce CVD. Interviewers surveyed 850 men and women 17-92 y old, using a quantitative food-frequency instrument. We observed many significant (chi(2) analysis P < 0.05) differences in nutrient intakes among 3 age-groups. Energy intake from carbohydrate was negatively related to participant age-group (P < or = 0.01). Energy intake from all fats (P < 0.001) and polyunsaturated fat (P < or = 0.01) was positively related to age-group among both men and women in contrast to other studies in which age differences were either not observed or decreased with age. Native foods were major sources of monounsaturated and polyunsaturated fats, including 56% of (n-3) fatty acids primarily from seal oil and salmon. However, Native foods contributed significantly less to the diets of young adults than to those of elders, especially among women. Store-bought foods were the main sources of energy, carbohydrate, fat, saturated fat, and fiber for all adults. Based on their nutrient density and potential to inhibit CVD, continued consumption of traditional foods is recommended. Variations in intake by age may portend changing eating patterns that will influence CVD as participants age. These data will contribute to understanding dietary risk factors for cardiovascular disease in this population.
This article is a report of the design and methods of the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) Study. This longitudinal, population-based study was initiated to investigate the genetic determinants of cardiovascular disease and its risk factors. Between October 2000 and April 2004, this family study enrolled 1,214 Eskimos from several coastal villages in the Norton Sound region of Western Alaska. Examinations included a physical, laboratory determinations, and measures of subclinical disease. This study will generate a genome-wide scan for loci influencing cardiovascular disease-related traits. Relations between subclinical atherosclerosis and markers of inflammation will be examined using historic and newly drawn samples. The study will provide data on CVD prevalence, risk factors and the relative contribution of genetic and environmental determinants in Alaska Native peoples. Data from this study will contribute to the delivery of health-care and prevention of CVD in Alaska Eskimos and other populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.