IL-17–producing T lymphocytes play a crucial role in inflammation, but their possible implication in fibrosis remains to be explored. In this study, we examined the involvement of these cells in a mouse model of lung inflammation and fibrosis induced by silica particles. Upregulation of IL-17A was associated with the development of experimental silicosis, but this response was markedly reduced in athymic, γδ T cell-deficient or CD4+ T cell-depleted mice. In addition, γδ T lymphocytes and CD4+ T cells, but not macrophages, neutrophils, NK cells or CD8 T cells, purified from the lungs of silicotic mice markedly expressed IL-17A. Depletion of alveolar macrophages or neutralization of IL-23 reduced upregulation of IL-17A in the lung of silicotic mice. IL-17R–deficient animals (IL-17R−/−) or IL-17A Ab neutralization, but not IL-22−/− mice, developed reduced neutrophil influx and injury during the early lung response to silica. However, chronic inflammation, fibrosis, and TGF-β expression induced by silica were not attenuated in the absence of IL-17R or -22 or after IL-17A Ab blockade. In conclusion, a rapid lung recruitment of IL-17A–producing T cells, mediated by macrophage-derived IL-23, is associated with experimental silicosis in mice. Although the acute alveolitis induced by silica is IL-17A dependent, this cytokine appears dispensable for the development of the late inflammatory and fibrotic lung responses to silica.
Macrophages phagocyte pathogenic microorganisms and orchestrate immune responses by producing a variety of inflammatory mediators. The cystic fibrosis (CF) transmembrane conductance regulator chloride channel has been reported to be of pivotal importance for macrophage functions. The exact phenotype and role of macrophages in CF is still unknown. Alveolar and peritoneal macrophages were monitored in CF mice homozygous for the F508 del mutation and in wild-type control animals. Classical (M1) and alternative (M2) macrophage polarization and responses to LPS from Pseudomonas aeruginosa were investigated, and the effect of azithromycin was examined in both cell populations. We show that alveolar macrophage counts were 1.7-fold higher in CF as compared with wild-type mice. The macrophage-related chemokine, chemokine C-C motif ligand (CCL)-2, was found to be at least 10-fold more abundant in the alveolar space of mutant mice. Cell count and CCL-2 protein levels were also increased in the peritoneal cavity of CF mice. Both M1 and M2 macrophage polarization were significantly enhanced in alveolar and peritoneal cells from F508del-CF mice as compared with control animals. LPS-stimulated expression of proinflammatory mediators, such as nitric oxide synthase-2, IL-1beta, and CCL-2, was increased, whereas anti-inflammatory IL-10 expression was decreased in CF macrophages. Azithromycin, added to cell cultures at 1 mg/liter, significantly reduced proinflammatory cytokine expression (IL-1beta, CCL-2, TNF-alpha) in M1-induced CF and wild-type alveolar macrophages. Our findings indicate that CF macrophages are ubiquitously accumulated, and that these cells are polarized toward classical and alternative activation status. Azithromycin down-regulates inflammatory cytokine production by M1-polarized CF alveolar macrophages.
Our study indicates that T reg cells contribute to lung fibrosis by stimulating fibroblasts through the secretion of PDGF-B in noninflammatory conditions and regulate detrimental T eff cell activities during inflammation-related fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.