Intestinal inflammation causes initial axonal degeneration and neuronal death but subsequent axon outgrowth from surviving neurons restores innervation density to the target smooth muscle cells. Elsewhere, the pro-inflammatory cytokines TNF␣ and IL-1 cause neurotoxicity, leading us to test their role in promoting enteric neuron death. In a rat coculture model, TNF␣ or IL-1 did not affect neuron number but did promote significant neurite outgrowth to twofold that of control by 48 h, while other cytokines (e.g., IL-4, TGF) were without effect. TNF␣ or IL-1 activated the NFB signaling pathway, and inhibition of NFB signaling blocked the stimulation of neurite growth. However, nuclear translocation of NFB in smooth muscle cells but not in adjacent neurons suggested a dominant role for smooth muscle cells. TNF␣ or IL-1 sharply increased both mRNA and protein for GDNF, while the neurotrophic effects of TNF␣ or IL-1 were blocked by the RET-receptor blocker vandetanib. Conditioned medium from cytokine-treated smooth muscle cells mimicked the neurotrophic effect, inferring that TNF␣ and IL-1 promote neurite growth through NFB-dependent induction of glial cell linederived neurotrophic factor (GDNF) expression in intestinal smooth muscle cells. In vivo, TNBS-colitis caused early nuclear translocation of NFB in smooth muscle cells. Conditioned medium from the intact smooth muscle of the inflamed colon caused a 2.5-fold increase in neurite number in cocultures, while Western blotting showed a substantial increase in GDNF protein. Pro-inflammatory cytokines promote neurite growth through upregulation of GDNF, a novel process that may facilitate re-innervation of smooth muscle cells and a return to homeostasis following initial damage.
Intestinal smooth muscle cells are normally quiescent, but in the widely studied model of trinitrobenzene sulfonic acid (TNBS)-induced colitis in the rat, the onset of inflammation causes proliferation that leads to increased cell number and an altered phenotype. The factors that drive this are unclear and were studied in primary cultures of circular smooth muscle cells (CSMC) from the rat colon. While platelet-derived growth factor (PDGF)-AA, fibroblast growth factor (FGF), and epidermal growth factor (EGF) were ineffective, PDGF-BB and insulin-like growth factor-1 (IGF-1) caused significant increase in [(3)H]thymidine incorporation, bromodeoxyuridine uptake, and increased CSMC number, with PDGF-BB (≥0.2 nM) substantially more effective than IGF-1. Surprisingly, CSMC lacked expression of PDGF receptor-β (PDGF-Rβ) upon isolation but by 4 days in vitro, CSMC gained expression of PDGF-Rβ as shown by quantitative PCR, Western blot analysis, and immunocytochemistry; these CSMC responded to PDGF-BB but not IGF-1. PDGF-BB caused PDGF-Rβ phosphorylation and mobilization from the surface membrane, leading to activation of both Akt and ERK signaling pathways, which were essential for subsequent proliferation. In contrast, PDGF-AA, FGF, EGF, and IGF-1 were ineffective. In vivo, control CSMC lacked expression of PDGF-Rβ. However, this changed rapidly with TNBS-colitis, and by day 2 when CSMC proliferation in vivo is maximal, freshly isolated CSMC showed on-going PDGF-Rβ phosphorylation that was further increased by exogenous PDGF-BB. This suggests that the onset of PDGF-Rβ expression is a key factor in CSMC growth in vitro and in vivo, where inflammation may damage intrinsic inhibitory mechanisms and thus lead to hyperplasia.
Intestinal inflammation causes an increased intestinal wall thickness, in part, due to the proliferation of smooth muscle cells, which impairs the contractile phenotype elsewhere. To study this, cells from the circular muscle layer of the rat colon (CSMC) were isolated and studied, both in primary culture and after extended passage, using quantitative PCR, Western blot analysis, and immunocytochemistry. By 4 days in vitro, both mRNA and protein for the smooth muscle marker proteins α-smooth muscle actin, desmin, and SM22-α were reduced by >50%, and mRNA for cyclin D1 was increased threefold, evidence for modulation to a proliferative phenotype. Continued growth caused significant further decrease in expression, evidence that phenotypic loss in CSMC was proportional to the extent of proliferation. In CSMC isolated at day 2 of trinitrobenzene sulfonic acid-induced colitis, flow cytometry and Western blotting showed that these differentiated markers were reduced in mitotic CSMC, while similar to control in nonmitotic CSMC. By day 35 post-trinitrobenzene sulfonic acid, when inflammation has resolved, CSMC were hypertrophic, but, nonetheless, showed markedly decreased expression of smooth muscle protein markers per cell. In vitro, day 35 CSMC displayed an accelerated loss of phenotype and increased thymidine uptake in response to serum or PDGF-BB. Furthermore, carbachol-induced expression of phospho-AKT (a marker of cholinergic response) was lost from day 35 CSMC in vitro, while retained in control cells. Therefore, proliferation reduces the expression of smooth-muscle-specific markers in CSMC, possibly leading to altered contractility. However, inflammation-induced proliferation in vivo also causes lasting changes that include unexpected priming for an exaggerated response to proliferative stimuli. Identification of the molecular mechanisms of intestinal smooth muscle cell phenotypic modulation will be helpful in reducing the detrimental effects of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.