Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
The aniline dimer PADPA (= p-aminodiphenylamine = N-phenyl-1,4-phenylenediamine) was polymerized to poly-(PADPA) at 25 °C with Trametes versicolor laccase (TvL)/O 2 as catalyst and oxidant and in the presence of vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as templates. In comparison to the previously studied polymerization of aniline with the same type of enzyme−vesicle system, the polymerization of PADPA is much faster, and considerably fewer enzymes are required for complete monomer conversion. Turbidity measurements indicate that PADPA strongly binds to the vesicle surface before oxidation and polymerization are initiated. Such binding is confirmed by molecular dynamics (MD) simulations, supporting the assumption that the reactions which lead to poly(PADPA) are localized on the vesicle surface. The poly(PADPA) obtained resembles the emeraldine salt form of polyaniline (PANI-ES) in its polaron state with a high content of unpaired electrons, as judged from UV/ vis/NIR, EPR, and FTIR absorption measurements. There are, however, also notable spectroscopic differences between PANI-ES and the enzymatically prepared poly(PADPA). Poly(PADPA) appears to be similar to a chemically synthesized poly(PADPA) as obtained in a previous work with ammonium peroxydisulfate (APS) as the oxidant in a mixture of 50 vol % ethanol and 50 vol % 0.2 M sulfuric acid (J. Phys. Chem. B 2008, 112, 6976−6987). ESI-MS measurements of early intermediates of the reaction with TvL and AOT vesicles indicate that the presence of the vesicles decreases the extent of formation of unwanted oxygen-containing species in comparison to the reaction in the absence of vesicles. This is the first information about the differences in the chemical composition of early reaction intermediates when the reaction carried out in the presence of vesicles under optimal conditions is compared with a template-free system.
The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide (H 2 O 2) to oligo(PADPA) in an aqueous suspension of 80-100 nm-sized anionic vesicles at pH = 4.3 and at T 25 °C. The vesicles were formed from AOT (= sodium bis(2-ethylhexyl) sulfosuccinate) and served as templates for obtaining oligo(PADPA) as emeraldine salt form of polyaniline (PANI-ES) in the polaron form. The optimal reaction conditions for obtaining a stable oligo(PADPA)-AOT vesicle suspension with a high conversion and low amounts of HRPC were elaborated by using UV/vis/NIR spectroscopy. The formation of PANI-ES type products was confirmed by in situ UV/vis/NIR, Raman and EPR spectroscopy measurements. However, HPLC-MS analyses indicated that the oligo(PADPA) products obtained are not
The oxidation of the aniline dimer, p-aminodiphenylamine (PADPA), with Trametes versicolor laccase and O2 in an aqueous solution of pH 3.5 is controlled by negatively charged AOT (sodium bis(2-ethylhexyl) sulfosuccinate) vesicles. With vesicles, a product resembling polyaniline in its emeraldine salt form (PANI-ES) is obtained, in contrast to the reaction without vesicles where no such product is formed. To understand this observation, the product distribution and structures from the reaction with and without vesicles were determined by using partially selectively deuterated PADPA as a starting material and analyzing the products with HPLC-MS. We found that in the presence of vesicles the main product is obtained in about 50% yield, which is the N-C-para-coupled PADPA dimer that has spectroscopic properties of PANI-ES, as determined by time-dependent density functional theory (TD-DFT) calculations. A secondary reaction route leads to longer PADPA oligomers that must contain a phenazine core. Without vesicles, PADPA and its products undergo partial hydrolysis, but in the presence of vesicles, hydrolysis does not occur. Because molecular dynamics (MD) simulations show that the main intermediate oxidation product is embedded within the vesicle membrane, where the water content is very low, we propose that the microenvironment of the vesicle membrane protects the oxidation products from unwanted hydrolysis.
We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80–100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of “ordinary” PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1–as expected for PANI-ES–but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.