Determinaram-se, neste trabalho, os módulos de deformidade de frutos de café em diferentes estádios de maturação, identificados pela coloração "verde", "verdoengo" e "cereja", obtidos para o produto comprimido em diferentes velocidades, segundo três orientações. A velocidade de compressão tem influência nos valores dos módulos dos frutos, a variação do valor do módulo do fruto com a velocidade de compressão é diferenciada de acordo com o estádio de maturação do produto e a orientação do fruto de café durante a compressão parece afetar muito pouco os valores dos módulos de deformidade do produto "verde"; entretanto, para frutos nos outros estádios de maturação, a posição de compressão é um parâmetro relevante. Para todas as posições de compressão, os valores do módulo de deformidade do fruto "verde" foram superiores aos dos frutos "cereja" e aos do produto "verdoengo"; enfim, os módulos dos frutos "cereja" sempre foram menores que os do "verdoengo".
RESUMO Esta pesquisa foi desenvolvida com o objetivo de se obter valores para algumas características físicas do café, necessárias ao desenvolvimento de unidades de separação aerodinâmicas e ao dimensionamento de secadores e silos. Investigou-se o efeito do teor de umidade nos valores da massa específica real e aparente, e nos da porosidade de grão de café das variedades Catuaí e Timor. Os grãos, colhidos em dois estádios de maturação (verde e cereja) foram submetidos a um processo de secagem em terreiro de cimento; trabalhou-se com dois lotes de café da variedade Catuaí, colhidos em épocas diferentes e a época de colheita não produziu alterações relevantes nos valores das massas específicas real e aparente; por outro lado, a massa específica real do café aumenta com acréscimos na umidade do grão, enquanto a massa específica aparente decresce. Os valores para essas massas são menores que aqueles para a maioria dos grãos agrícolas; entretanto, a porosidade de ambas encontra-se na mesma faixa de valores.
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and temperature fields in the microclimates were found to strongly depend on the characteristics of the external boundary layer forming along the clothing and on the distribution of temperature in the clothing. The local heat transfer rates obtained in the microclimate are in marked contrast with those found in the literature for enclosures with constant-temperature active walls. These results stress the importance of coupling the calculation of the internal and the external flows and of the heat transfer convective and radiative components, when analyzing the way heat is transported to/from the body.
PurposeThe purpose of this paper is to investigate the heat transfer on an alpine‐climbing mitt featuring an electrical heating multilayer, in order to provide information for the optimization of its thermal performance.Design/methodology/approachA numerical model was developed to simulate the heat transfer across an electrical‐heated alpine mitt. The model was used to study the heat losses as a function of the environmental conditions, to optimise the positioning of the heating elements, to determine the optimal power input to the heating system, to estimate the battery capacity requirements and to assess the effect of low‐emissivity surfaces.FindingsThe results show that: the heating elements assure approximately constant temperatures across the skin provided they are not more than 6‐7 mm apart; the use of low‐emissivity surfaces facing the skin can reduce the total heat loss by 8‐36 per cent (for air layer thicknesses in the range 10−3 to 10−2 m) and to increase the skin temperature during the transient operation of the heating multilayer; the heat losses from the mitt are practically independent of the chosen heating power; and a battery capacity of 4 A h assures active temperature regulation for more than 18‐23 h.Practical implicationsBy enhancing the thermal performance of an electrical heating mitt, the use of low‐emissivity surfaces (facing the skin) can favour the thermal comfort perception of its user.Originality/valueThe influence of several parameters on the thermal performance of an electrical‐heated mitt is analysed and discussed. The findings are relevant for improving the performance of existing electrical heating garments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.