Summary SentenceNeonatal genistein exposure at physiologically relevant levels advances vaginal opening, disrupts ovarian development and defeminizes the ontogeny of kisspeptin signaling pathways in the female rat hypothalamus.Neonatal exposure to estrogenic endocrine disrupting compounds (EDCs) can advance pubertal onset and induce premature anestrous in female rats. It was recently discovered that hypothalamic kisspeptin (KISS) signaling pathways are sexually dimorphic and regulate both the timing of pubertal onset and estrous cyclicity. Thus we hypothesized that disrupted sex specific ontogeny of KISS signaling pathways might be a mechanism underlying these EDC effects. We first established the sex specific development of KISS gene expression, cell number and neural fiber density across peripuberty in the anteroventral periventricular nucleus (AVPV) and arcuate (ARC), hypothesizing that the sexually dimorphic aspects of KISS signaling would be most vulnerable to EDCs. We next exposed female rats to the phytoestrogen genistein (GEN, 1 or 10 mg/kg bw), estradiol benzoate (EB, 10 μg), or vehicle from post natal day (P) 0-3 via subcutaneous (sc) injection. Animals were sacrificed on either P21, 24, 28, or 33 (n = 5-14 per group at each age). Vaginal opening was significantly advanced by EB and the higher dose of GEN compared to control animals and was accompanied by lower numbers of KISS immunoreactive fibers in the AVPV and ARC. Ovarian morphology was also assessed in all age groups for the presence of multiple oocyte follicles (MOFs). The number of MOFs decreased over time in each group, and none were observed in control animals by P24. MOFs were still present, however, in the EB and 10 mg/kg GEN groups beyond P24 indicating a disruption in the timing of ovarian development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.