Surface modification of biomaterials is a way to tailor cell responses whilst retaining the bulk properties. In this work, chitosan membranes were prepared by solvent casting and treated with nitrogen or argon plasma at 20 W for 10-40 min. AFM indicated an increase in the surface roughness as a result of the ongoing etching process. XPS and contact angle measurements showed different surface elemental compositions and higher surface free energy. The MTS test and direct contact assays with an L929 fibroblast cell line indicated that the plasma treatment improved the cell adhesion and proliferation. Overall, the results demonstrated that such plasma treatments could significantly improve the biocompatibility of chitosan membranes and thus improve their potential in wound dressings and tissue engineering applications.
Surface properties play a vital role in the functioning of a biomaterial. Cellular adherence and growth onto biomaterials can be enhanced in biomaterial modifications of their surface. In this work, the cell behavior on chitosan membranes modified by argon and nitrogen-plasma treatments was investigated. Characterization of the membranes was performed using atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Cytotoxicity assessment and direct contact assay were carried out for untreated and treated chitosan membranes using L929 fibroblast-like cells. Cell morphology and cell viability were assessed to evaluate the cell attachment and proliferation. Changes in terms of roughness, surface chemistry, and hydrophilicity/hydrophobic balance of chitosan-modified membranes were observed. Regarding cell studies, the findings revealed that the extracts of all membranes do not induce cytotoxic effects. Moreover, the in vitro assays evidenced an improvement of the L929 adhesion and attachment when compared to untreated chitosan membranes. Overall, the data obtained clearly demonstrated that plasma treatments constitute an effective way of improving the biocompatibility of chitosan membranes towards to their use in biomedical applications.
Cells microencapsulated in biocompatible semi-permeable polymeric membranes are effective as cell delivery systems while protecting the host against immune responses. In this study, cell encapsulation membranes were prepared based on carrageenan and alginate, two natural cationic polymers. Different formulations/conditions were explored to optimize the microcapsules which were characterized with respect to their morphology, mechanical stability, and cytotoxicity. Spherical-shaped microcapsules were obtained from all the polymeric systems. The iota-carrageenan/sodium alginate microcapsules exhibited the best stability and permeability, and therefore, these were selected for the cell encapsulation. These capsules provided an environment that supported cell proliferation and have the potential for tissue engineering as well as other cell-based therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.