Abstract:The characterization and cellular localization of tryptophan hydroxylase mRNA in the human brainstem and pineal gland were investigated by using northern blot analysis and in situ hybridization histochemistry. Northern analysis of human pineal gland revealed the presence of two mRNA species that were absent in RNA isolated from human raphe. In situ hybridization experiments revealed very dense hybridization signal corresponding to tryptophan hydroxylase mRNA in cells throughout the pineal gland. In contrast, tryptophan hydroxylase mRNA was heterogeneously distributed in neurons in the dorsal and median raphe nuclei. Within the dorsal raphe, the ventrolateral and interfascicular subnuclei contained the greatest number of tryptophan hydroxylase mRNA-positive neurons. Also, the cellular concentration of tryptophan hydroxylase mRNA varied widely within the dorsal and median raphe. Comparison of the cellular concentration of tryptophan hydroxylase mRNA between the pineal gland and the raphe nuclei revealed an 11 -and 46-fold greater average grain density of tryptophan hydroxylase mRNA positive cells in the pineal gland compared with the dorsal and median raphe, respectively. These findings are the first to demonstrate the cellular localization of tryptophan hydroxylase mRNA in the human brain and pineal gland as well as heterogeneity in the cellular concentration within and between these tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.