Several plasma membrane chloride channels are well characterized, but much less is known about the molecular identity and function of intracellular Cl- channels. ClC-3 is thought to mediate swelling-activated plasma membrane currents, but we now show that this broadly expressed chloride channel is present in endosomal compartments and synaptic vesicles of neurons. While swelling-activated currents are unchanged in mice with disrupted ClC-3, acidification of synaptic vesicles is impaired and there is severe postnatal degeneration of the retina and the hippocampus. Electrophysiological analysis of juvenile hippocampal slices revealed no major functional abnormalities despite slightly increased amplitudes of miniature excitatory postsynaptic currents. Mice almost lacking the hippocampus survive and show several behavioral abnormalities but are still able to acquire motor skills.
Inactivation of the mainly endosomal 2Cl؊ /H ؉ -exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent's disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a "PY-motif" in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation. Unlike ClC-5 knock-out mice, these knock-in mice displayed neither low molecular weight proteinuria nor hyperphosphaturia, and both receptor-mediated and fluidphase endocytosis were normal. The abundances and localizations of the endocytic receptor megalin and of the Na ؉ -coupled phosphate transporter NaPi-2a (Npt2) were not changed, either. To explore whether the discrepancy in results from heterologous expression studies might be due to heteromerization of ClC-5 with ClC-3 or ClC-4 in vivo, we studied knock-in mice additionally deleted for those related transporters. Disruption of neither ClC-3 nor ClC-4 led to proteinuria or impaired proximal tubular endocytosis by itself, nor in combination with the PY-mutant of ClC-5. Endocytosis of cells lacking ClC-5 was not impaired further when ClC-3 or ClC-4 was additionally deleted. We conclude that ClC-5 is unique among CLC proteins in being crucial for proximal tubular endocytosis and that PY-motif-dependent ubiquitylation of ClC-5 is dispensable for this role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.