Short-chain fatty acid (SCFA) formation by intestinal bacteria is regulated by many different host, environmental, dietary and microbiological factors. In broad terms, however, substrate availability, bacterial species composition of the microbiota and intestinal transit time largely determine the amounts and types of SCFA that are produced in healthy individuals. The majority of SCFA in the gut are derived from bacterial breakdown of complex carbohydrates, especially in the proximal bowel, but digestion of proteins and peptides makes an increasing contribution to SCFA production as food residues pass through the bowel. Bacterial hydrogen metabolism also affects the way in which SCFA are made. This outcome can be seen through the effects of inorganic electron acceptors (nitrate, sulfate) on fermentation processes, where they facilitate the formation of more oxidised SCFA such as acetate, at the expense of more reduced fatty acids, such as butyrate. Chemostat studies using pure cultures of saccharolytic gut micro-organisms demonstrate that C availability and growth rate strongly affect the outcome of fermentation. For example, acetate and formate are the major bifidobacterial fermentation products formed during growth under C limitation, whereas acetate and lactate are produced when carbohydrate is in excess. Lactate is also used as an electron sink inClostridium perfringensand, to a lesser extent, inBacteroides fragilis. In the latter organism acetate and succinate are the major fermentation products when substrate is abundant, whereas succinate is decarboxylated to produce propionate when C and energy sources are limiting.
The colonic microbiota plays an important role in human digestive physiology and makes a significant contribution to homeostasis in the large bowel. The microbiome probably comprises thousands of different bacterial species. The principal metabolic activities of colonic microorganisms are associated with carbohydrate and protein digestion. Nutrients of dietary and host origin support the growth of intestinal organisms. Short-chain fatty acids (SCFAs), predominantly acetate, propionate, and butyrate, are the principal metabolites generated during the catabolism of carbohydrates and proteins. In contrast, protein digestion yields a greater diversity of end products, including SCFAs, amines, phenols, indoles, thiols, CO2, H2, and H2S, many of which have toxic properties. The majority of SCFAs are absorbed from the gut and metabolized in various body tissues, making a relatively small but significant contribution to the body's daily energy requirements. Carbohydrate fermentation is, for the most part, a beneficial process in the large gut, because the growth of saccharolytic bacteria stimulates their requirements for toxic products associated with putrefaction, for incorporation into cellular proteins, thereby protecting the host. However, as digestive materials move along the gut, carbohydrates become depleted, which may be linked to the increased prevalence of colonic disease in the distal bowel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.