MgB 2 multi-filamentary superconductors are widely considered for use in dc applications. To expand the possible application range to ac apparatuses, the development of a low ac loss wire is needed. This development involves several steps, and a solid understanding of the loss mechanisms is important to optimize that process as well as for evaluating dc wires exposed to current or magnetic field ripple. In this study we discuss the coupling currents and their influence on hysteresis loss as well as on coupling current loss. We give a phenomenological explanation of the origin and behaviour of the coupling currents and describe the loss patterns for hysteresis loss and coupling current loss separately. Finally, we interpret measured AC losses in an MgB 2 wire cut into different lengths representing different twist pitches. Under certain circumstances short sample lengths are shown to give inaccurate measurement results. On the other hand, short sample lengths of non-twisted wires can be used to estimate the twist pitch necessary to electromagnetically decouple the superconducting filaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.