Society has been increasingly exposed to low-frequency electromagnetic fields (EMF), mainly from electricity distribution networks and electro-electronic devices. Aiming to clarify the extension of possible interactions between EMF and testicular development, this study evaluated the effects of exposure to 60 Hz and 1 mT EMF in the maturation of testicular components. Wistar rats were exposed to EMF three times per day for 30 min, between the 13th day of gestation and the 21st postnatal day. Results showed a decrease in the following parameters: tubular diameter and seminiferous tubules area; seminiferous epithelium height; total volume of seminiferous tubule; tubular lumen; seminiferous epithelium; and Leydig cells. On the other hand, an increase was observed in connective tissue cells and blood vessels volume. Plasma testosterone, Sertoli cells population, tubular length and gonadosomatic index did not change when exposed to EMF. Histomorphometric analysis showed that exposure to EMF can promote a delay in testicular development.
Due to the widespread use of fluoxetine to treat depression, including pregnant and nursing women, the present study aimed to investigate the effects of in utero and lactational exposure to fluoxetine in rat offspring at post natal day 22. Wistar rat dams were orally treated with fluoxetine (5, 10, and 20 mg/kg) from day 13 gestation to day 21 lactation. Exposure to 10 and 20 mg/kg fluoxetine reduced the body and testis weights. The volume of the seminiferous tubules and epithelium were also reduced following 20 mg/kg fluoxetine exposure. The length of the seminiferous tubules and the population of Sertoli cells changed in offspring exposed to fluoxetine. The amount of seminiferous tubules lacking tubular lumen was higher in rats exposed to 20 mg/kg fluoxetine. Plasma testosterone showed no significant change. In conclusion, fluoxetine exposure via the placenta and lactation may inhibit and delay testicular development, adversely affecting several testicular parameters important for the establishment of sperm production in adulthood.
Olanzapine is an atypical antipsychotic drug that has been increasingly used in acute treatment of, and therapeutic support for, schizophrenia, bipolar disorder and other psychoses. Considering that olanzapine acts on the dopaminergic receptor and this receptor is detected in germ cells, the present study aims to investigate the effects of treatment with different doses of olanzapine on spermatogenesis, plasma testosterone and weight of androgen-dependent organs in rats. Results showed reduced plasma testosterone levels, and reduced testis, epididymis and prostate weights. Histopathologic and histomorphometric analysis of spermatogenesis indicated testicular degeneration. Furthermore, germ cell desquamation, syncytial multinucleated cells, Sertoli cell vacuolization and presence of necrotic and apoptotic germ cells wwew observed. Olanzapine treatment in rats promoted endocrinological changes and lesions in the testis, leading to a disturbance in spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.