The aerobic biotransformation over 180 days of two cationic quaternary ammonium compounds (QACs) with perfluoroalkyl chains was determined in soil microcosms, and biotransformation pathways were proposed. This is the first time that polyfluoroalkyl cationic surfactants used in aqueous film-forming foam (AFFF) formulations were studied for their environmental fate. The biotransformation of perfluorooctaneamido quaternary ammonium salt (PFOAAmS) was characterized by a DT50 value (time necessary to consume half of the initial mass) of 142 days and significant generation of perfluoroalkyl carboxylic acid (PFOA) at a yield of 30 mol % by day 180. The biotransformation of perfluorooctane sulfonamide quaternary ammonium salt (PFOSAmS) was very slow with unobservable change of the spiked mass; yet the generation of perfluorooctanesulfonate (PFOS) at a yield of 0.3 mol % confirmed the biotransformation of PFOSAmS. Three novel biotransformation intermediates were identified for PFOAAmS and three products including perfluorooctane sulfonamide (FOSA) for PFOSAmS through high-resolution mass spectrometry (MS) analysis and t-MS(2) fragmentation. The significantly slower PFOSAmS biotransformation is hypothesized to be due to its stronger sorption to soil owing to a longer perfluoroalkyl chain and a bulkier sulfonyl group, when compared to PFOAAmS. This study has demonstrated that despite overall high stability of QACs and their biocide nature, the ones with perfluoroalkyl chains can be substantially biotransformed into perfluoroalkyl acids in aerobic soil.
The derailment of an unmanned train carrying crude oil and subsequent fire in the town of Lac-Mégantic, Quebec, led to the use of 33 000 L of aqueous film forming foam (AFFF) concentrate. While it is known that per- and polyfluoroalkyl substances (PFASs) contained in AFFFs pose a potential environmental and health risk, critical knowledge gaps remain as regards to their environmental fate after release. The accident in Lac-Mégantic provided valuable information regarding the identity and concentration of PFASs present in the soil after the AFFF deployment, as well as their possible transformation over time. The current study analyzed four sets of samples from Lac-Mégantic: soil collected days after the accident from a heavily impacted area, soil sampled two years later from the treatment biopiles, soil collected two years after the accident from downtown Lac-Mégantic, and nonimpacted soil from a nearby area. A total of 33 PFASs were quantified in the soils. The highest observed concentrations correspond to those of 6:2 fluorotelomer sulfonamidoalkyl betaine, 6:2 and 8:2 fluorotelomer sulfonates, and short chain perfluorocarboxylic acids. The soils collected in Lac-Mégantic two years after the accident show a total PFAS concentration that is ∼50 times lower than soils collected in 2013, while the proportion of perfluoroalkyl acids in those samples shows an increase. Qualitative analysis revealed the presence in soil of 55 additional PFASs that had been previously identified in AFFF formulations. The present study highlights the need to perform detailed analysis of AFFF impacted sites, instead of focusing solely on perfluoroalkyl acids.
Zwitterionic, cationic, and anionic per-and polyfluoroalkyl substances (PFASs) are identified in aqueous film-forming foam (AFFF) concentrates and AFFF-impacted sites. However, the mobility potential of zwitterionic and cationic PFASs is poorly understood, preventing reliable site assessment. The study aimed to elucidate the mobility behaviors of PFASs of various charge states in saturated soil−water systems and assess critical influencing factors. Five anionic, three zwitterionic, and one cationic PFASs were investigated in five soils through batch sorption experiments. Pairwise comparison revealed that the quaternary ammonium group imparted a strong affinity of cationic perfluorooctaneamide ammonium compound (PFOAAmS) for soils. The influence of the quaternary ammonium group is mitigated in polyfluoroalkyl betaines, yet perfluorooctane sulfonamidoalkyl betaine (PFOSB) showed strong sorption in selected soils. Two soil bulk properties showed some correlations with the soil−water distribution coefficient (K d ). A positive correlation with the fraction of soil organic carbon was found only for anionic PFASs, whereas cation exchange capacity had an approximate positive correlation with K d only for PFOAAmS. Water chemistry (Ca 2+ and pH) influences the sorption of nonanionic PFASs in very distinct fashions or even in opposite trends to what was known for anionic PFASs. Sorption was insensitive to pH changes except for PFOSB; PFOSB underwent profound sorption reduction because its speciation occurs around neutral pH, while the two other betaines and PFOAAmS have pK a values that are outside of the environmentally relevant range. The lack of correlations suggests that the transport potential of PFASs is probably highly site-specific. It remains a challenge in deciphering PFAS sorption mechanisms and predicting how AFFF plumes migrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.