The neuropeptide oxytocin (OT) modulates social behaviours and is an important anxiolytic substance of the brain. However, sites of action and the intracellular signalling pathways downstream of OT receptors (OTR) within the brain remain largely unknown. In the present studies, we localized the anxiolytic effect of OT by bilateral microinfusion of OT (0.01 nmol/0.5 microL) into the hypothalamic paraventricular nucleus (PVN) in male rats using both the elevated plus-maze and the light-dark box. Moreover, intracerebroventricular administration of OT, but not of the related neuropeptide vasopressin (VP), dose-dependently activated the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Specifically, OT induced the phosphorylation of Raf-1, MEK1/2 and ERK1/2 in the hypothalamus in vivo and in hypothalamic H32 neurons via EGF receptors. OT-induced ERK1/2 phosphorylation was immunohistochemically localized within VP neurons of the PVN and the supraoptic nucleus. Importantly, the anxiolytic effect of OT within the PVN was prevented by local inhibition of the MAP kinase cascade with a MEK1/2 inhibitor (U0126, 0.5 nmol/0.5 microL) locally infused prior to OT, indicating the causal involvement of this intracellular signalling cascade in the behavioural effect of OT. OT effects within the hypothalamus may have far-reaching implications for the regulation of emotionality and social behaviours and, consequently, for the development of possible therapeutic strategies to treat affective disorders. Thus, OTR agonism or activation of the ERK1/2 cascade, specifically within the hypothalamus, may provide therapeutically relevant mechanisms.
Acute graft-versus-host disease (aGVHD) is a major complication after allogeneic bone marrow transplantation (allo-BMT), and infiltration of donor leukocytes into aGVHD target organs is partially orchestrated by chemokines. Using a murine BMT model, the expression of 30 chemokines or chemokine receptors in the lung, liver, gut and tongue was analyzed using real-time PCR at 1, 2, 3 and 6 weeks after BMT during the development of clinical aGVHD and target organ histopathology. CXCL9-11 expression was linked to elevated expression of CXCR3 in the gut, lung and tongue. In contrast, hepatic CXCR3 expression was not changed, whereas a clear association was seen for CXCL16 and CXCR6 expression. An elevated intestinal CCL3 expression 1 week after allo-BMT was associated with an increased expression of CCR5 but not CCR1 or CCR3, and in the lung and liver CCL3-CCL5 expression was associated with increases in CCR1 and CCR5. Overexpression of CCL2, CCL8, CCL12 and their receptor CCR2 was found in the liver and lung, but not in the gut and tongue. On the basis of the differences in kinetics and organ distribution, more studies are required to better characterize specific targets within this network, as this will allow the development of novel preventive and therapeutic approaches by using single or multiple targeting reagents.
Pulmonary graft-versus-host disease (pGVHD) is a major complication after allogeneic bone marrow transplantation (BMT), which involves donor leukocyte migration into the lung along chemokine gradients, leading to pulmonary dysfunction and respiratory insufficiency. As broad spectrum chemokine inhibitor (BSCI) NR58-3.14.3 suppresses leukocyte migration in response to various chemokines, including CCL2, CCL3, CCL5, we investigated the effects of NR58-3.14.3 on the evolution of pGVHD. Lethally irradiated B6D2F1 mice received BMT from syngeneic (B6D2F1) or allogeneic (C57BL/6) donors, and animals were treated with either NR58-3.14.3 or vehicle control from day -1 to day +14. At week 6, in allogeneic recipients that received BSCI, inflammatory cell infiltrates in the lung were decreased, and reduced histopathologic changes translated into improved pulmonary function when compared to allo-controls. Acute GVHD of the liver was also diminished, whereas no differences were seen in the gut. Alloantigen-dependent splenic T cell expansion and systemic TNF-alpha and IFN-gamma levels were comparable in NR58-3.14.3-treated animals and allo-controls. No suppressive effect of NR58-3.14.3 on CTL cytotoxicity was found, and diminished cellular infiltrates in lung and liver were most likely due to decreased migration of mononuclear cells. Therefore, novel approaches involving BSCIs may provide a promising tool in the management of pGVHD.
Noninfectious lung injury and acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant morbidity and mortality. Azithromycin is widely used in allogeneic HCT recipients for pulmonary chronic GVHD, although current data appear controversial. We induced GVHD and noninfectious lung injury in lethally irradiated B6D2F1 mice by transplanting bone marrow and splenic T cells from allogeneic C57BL/6 mice. Experimental groups were treated with oral azithromycin starting on day 14 until the end of week 6 or week 14 after transplantation. Azithromycin treatment resulted in improved survival and decreased lung injury; the latter characterized by improved pulmonary function, reduced peribronchial and perivascular inflammatory cell infiltrates along with diminished collagen deposition, and a decrease in lung cytokine and chemokine expression. Azithromycin also improved intestinal GVHD but did not affect liver GVHD at week 6 early after transplantation. At week 14, azithromycin decreased liver GVHD but had no effect on intestinal GVHD. In vitro, allogeneic antigen-presenting cell (APC)- dependent T cell proliferation and cytokine production were suppressed by azithromycin and inversely correlated with relative regulatory T cell (Treg) expansion, whereas no effect was seen when T cell proliferation occurred APC independently through CD3/CD28-stimulation. Further, azithromycin reduced alloreactive T cell expansion but increased Treg expansion in vivo with corresponding downregulation of MHC II on CD11c(+) dendritic cells. These results demonstrate that preventive administration of azithromycin can reduce the severity of acute GVHD and noninfectious lung injury after allo-HCT, supporting further investigation in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.