Tissue stem cells must be endowed with superior maintenance and repair systems to ensure genomic stability over multiple generations, which would be less necessary in more differentiated cells. We previously reported that human keratinocyte stem cells were more resistant to ionizing radiation toxicity than their direct progeny, the keratinocyte progenitor cells. In the present study we addressed the mechanisms underlying this difference. Investigations of DNA repair showed that both single and double DNA strand breaks were repaired more rapidly and more efficiently in stem cells than in progenitors. As cell signaling is a key regulatory step in the management of DNA damage, a gene profiling study was performed. Data revealed that several genes of the fibroblast growth factor type 2 (FGF2) signaling pathway were induced by DNA damage in stem cells and not in progenitors. Furthermore, an increased content of the FGF2 protein was found in irradiated stem cells, both for the secreted and the cellular forms of the protein. To examine the role of endogenous FGF2 in DNA repair, stem cells were exposed to FGF2 pathway inhibitors. Blocking the FGF2 receptor (FGF receptor 1) or the kinase (Ras-mitogen-activated protein kinase 1) resulted in a inhibition of single and double DNA strand-break repair in the keratinocyte stem cells. Moreover, supplementing the progenitor cells with exogenous FGF2 activated their DNA repair. We propose that, apart from its well-known role as a strong mitogen and prosurvival factor, FGF2 helps to maintain genomic integrity in stem cells by activating stress-induced DNA repair. Stem Cells 2010; 28:1639–1648.
The basal layer of human epidermis contains both stem cells and keratinocyte progenitors. Because of this cellular heterogeneity, the development of methods suitable for investigations at a clonal level is dramatically needed. Here, we describe a new method that allows multi-parallel clonal cultures of basal keratinocytes. Immediately after extraction from tissue samples, cells are sorted by flow cytometry based on their high integrin-a6 expression and plated individually in microculture wells. This automated cell deposition process enables large-scale characterization of primary clonogenic capacities. The resulting clonal growth profile provided a precise assessment of basal keratinocyte hierarchy, as the size distribution of 14-day-old clones ranged from abortive to highly proliferative clones containing 1.7 · 10 5 keratinocytes (17.4 cell doublings).Importantly, these 14-day-old primary clones could be used to generate three-dimensional reconstructed epidermis with the progeny of a single cell. In long-term cultures, a fraction of highly proliferative clones could sustain extensive expansion of >100 population doublings over 14 weeks and exhibited long-term epidermis reconstruction potency, thus fulfilling candidate stem cell functional criteria. In summary, parallel clonal microcultures provide a relevant model for single-cell studies on interfollicular keratinocytes, which could be also used in other epithelial models, including hair follicle and cornea. The data obtained using this system support the hierarchical model of basal keratinocyte organization in human interfollicular epidermis.Key words: a6-integrin -flow cytometry -human keratinocytesparallel clonal cultures -progenitors -stem cells -tissue reconstructionPlease cite this paper as: Exploration of the functional hierarchy of the basal layer of human epidermis at the single-cell level using parallel clonal microcultures of keratinocytes.
In the present study, we show an inverse correlation between PTCH1 expression level and cellular radiosensitivity, suggesting an explanation for the conflicting results previously reported for Gorlin syndrome and possibly providing a basis for prognostic screens for radiosensitive patients with Gorlin syndrome and PTCH1 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.