The browning of glucose-fructose-glycine mixtures involves parallel glucose-glycine and fructose-glycine reactions, which share a common intermediate, the immediate precursor of melanoidins in the kinetic model. At pH 5.5, 55 degrees C glucose is converted into this intermediate in a two step process where k(1) = (7.8 +/- 1.1) x 10(-)(4) mol L(-)(1) h(-)(1) and k(2) = (1.84 +/- 0.31) x 10(-)(3) h(-)(1) according to established kinetics, whereas fructose is converted into this intermediate in a single step where k(4) = 5.32 x 10(-)(5)()()mol L(-)(1) h(-)(1). The intermediate is converted to melanoidins in a single rate limiting process where k(mix) = 0.0177 h(-)(1) and the molar extinction coefficient (based on the concentration of sugar converted) of the melanoidins so formed is 1073 +/- 4 mol(-)(1) L cm(-)(1). Whereas the value of k(mix) is the same when the individual sugars undergo browning, the value of the molar extinction coefficient is similar to that for melanoidins from the glucose-glycine reaction (955 +/- 45 mol(-)(1) L cm(-)(1)) but it is approximately double the value for melanoidins from the fructose-glycine reaction (478 +/- 18 mol(-)(1) L cm(-)(1)). This is the reason that the effects of glucose and fructose on the rate of browning are synergistic.
We followed the contribution of released glucose to the formation of melanoidins in the maltose-glycine reaction by adding (14)C glucose to the maltose-glycine mixture, after it already had undergone some reaction. This approach allowed us to confirm the turnover of glucose in this reaction and hence the role of glucose in forming melanoidins. A comparison of the total amount of glucose converted into the melanoidins with the total concentration of melanoidins formed from maltose and glycine showed that the concentration of melanoidins originating from the released glucose was relatively small in comparison to the total melanoidins concentration. Hence, the parallel glucose-glycine reaction is considered to be only a minor pathway in the formation of maltose-glycine melanoidins. The incorporation of glucose into the nondialyzable melanoidins in the maltose-glycine reaction was in excellent agreement with the amount estimated from a kinetic model for the reaction of maltose with glycine. The rate constants were estimated by nonlinear regression, via multiresponse modeling.
The composition of melanoidins formed in the reactions of either glucose or maltose with glycine (70 degrees C, pH 5.5, [glucose] = [maltose] = [glycine] = 0.25 M) (MW > 3500) was investigated by microanalysis and the use of (14)C-labeled sugars and amino acid. The most reliable parameter obtained from microanalysis data is the C/N value, as it was calculated with no model assumption. The C/N value (7.6 +/- 0.2 for glucose and 10.5 +/- 0.2 for maltose) does not change with molecular weight (MW > 3500) as the polymers grow in size. A comparison between the radiochemically determined composition and that obtained from microanalysis suggests that the amino ketone, which is one of the products of Strecker degradation reaction, forms part of the of the melanoidin structure, together with the sugar-derived moiety and the Strecker aldehyde. Evidence is presented that glucose is formed at intermediate stages of the maltose-glycine reaction. The melanoidins are the result of the polymerization of glucose and intact, or substantially intact, maltose residues with glycine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.