In the present study, the effects of three production processes (pressing of roasted pumpkin seed paste, pressing of unroasted ground pumpkin seeds and pressing of unroasted ground pumpkin seeds while cooling the press) on the properties of pumpkin seed oils produced from two seed varieties (husked and naked) were investigated. Oils produced with roasting had a higher initial peroxide value (PV), twofold higher total phenol content and better oxidative stability while cold pressed oils had higher tocopherol content. Fatty acid and triacylglycerol compositions were not significantly affected by the processing conditions. Oxidative stability of the oils positively correlated with oleic acid content and negatively correlated with linoleic and linolenic acid contents. The lack of correlation in oxidative stability with tocopherol and polyphenol contents suggests that improvement in oxidative stability of roasted oils could have been caused by antioxidative Maillard reaction products or inactivation of oil degrading enzymes. In addition, oils produced from husked seeds had significantly higher linoleic acid, triacylglycerols (TAG) containing mainly linoleic acid (LLL, OLL and PLL), tocopherol and phenol contents while oleic acid and TAG containing mainly oleic acid (LOO and OOO) contents and oxidative stability were lower. Principal component analysis (PCA) of the analytical data confirmed the observed differences between oils from two varieties and three production processes.
Conditioning rapeseed can significantly increase the amount of bioactive compounds in the crude oil, but if the conditioning temperatures are too high, they can cause unwanted side effects such as darker color and sensory defects. Modest conditioning temperatures may be more suitable, but little is known about the effects on the quality and bioactive composition of the resulting oil. Oil was recovered from five rapeseed cultivars by cold pressing (CP) or by pressing seeds conditioned at 80 °C for 30 min (HP). Conditioning rapeseed increased oil yield without changing fatty acid composition and increased the amount of total sterols by 16 %, total tocopherols by 20 %, and the levels of polyphenols. Levels of the polyphenol canolol were up to 55‐fold higher in HP oil than in CP oil. These higher levels of bioactive compounds gave HP oil higher radical scavenging activity. Although HP oil also had higher free fatty acid contents, peroxide levels, and specific UV extinctions (K values). The quality parameters of HP and CP oils were within codex limits indicating high quality. Modest conditioning temperatures can be used to produce rapeseed oil with high quality and radical scavenging activity.
This study included olive oil samples produced from the Croatian varieties Bianchera and Busa, and an Italian variety Leccino cultivated in the west Istria region, Croatia. The influence of variety and harvest time on the bitterness and phenolic compounds of olive oilThe influence of harvest time on the intensity of bitterness and the level of phenol compounds in olive oil from the region of western Istria, obtained from 2 local (Bianchera and Busa) and one introduced, Italian variety (Leccino) was studied. Olive fruits were harvested at 3 different harvesting periods, during 4 successive crops seasons. Immediately after harvesting, the fruits were processed under the same conditions in a pilot plant. Basic quality parameters, the content of total polyphenols, o-diphenols and the intensity of bitterness were determined in oil samples. Samples of oil obtained from the Bianchera and Busa varieties were additionally tested for stability at elevated temperature (98 °C) and under the influence of UV-light.The results elaborated statistically showed the level of phenol compounds and the intensity of bitterness to be significantly influenced by both the harvest time and olive variety, with the influence of harvest time being more pronounced. The applied tests for accelerated deterioration of oil indicated a more rapid increase in the peroxide value in oil samples of both varieties exposed to UV-light than in those exposed to elevated temperature. Both tests showed better stability of the oil obtained from the Bianchera variety.
The objective of this study is to compare the influence of genotype, environmental conditions and processing methods after maturation and harvesting of four varieties of flaxseed (Altess, Biltstar, Niagara and Oliwin) on the levels of tocochromanols, carotenoids and chlorophyll in flaxseed oil. Samples were produced by cold pressing of dry seeds and seeds heated for 30 min at 60 °C. Temperature, sunshine and rainfall were primary environmental conditions included. Grand mean of mass fraction of γ-tocopherol was (522±29), of plastochromanol-8 (305±2) and total tocochromanols (831±3) mg per kg of oil. The highest levels of these compounds and strongest antioxidant activity were found in cold- -pressed oil of Biltstar variety. During seed maturation, levels of γ-tocopherol and plastochromanol-8 increased with average temperature and total sunshine and decreased with total rainfall. Fifth week after flowering was identified as the maturation period with best climate conditions to achieve optimal tocochromanol content. Grand mean of mass fraction of carotenoids expressed as β-carotene was (1.83±0.01) and of chlorophyll expressed as pheophytin a (0.43±0.10) mg per kg of oil. Altess variety had the highest levels of pigments. Antioxidant activity decreased with the increase of chlorophyll, while correlations with carotenoids were not determined. Generally, oil obtained by cold pressing had higher levels of tocochromanols and lower levels of pigments but similar antioxidant activity to the oil after seed conditioning. The results of this study contribute to identifying the flaxseed variety that is the best for oil production with the highest antioxidant activity and nutritive value, and provide better understanding of tocochromanol biosynthesis depending on different climate conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.