Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp À/À larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp À/À animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp À/À zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
The zebrafish, Danio rerio, has been established as an excellent vertebrate model for the study of developmental biology and gene function. It also has proven to be a valuable model to study human diseases. Here, we reviewed recent publications using zebrafish to study the pathology of human neurodegenerative diseases including Parkinson’s, Huntington’s, and Alzheimer’s. These studies indicate that zebrafish genes and their human homologues have conserved functions with respect to the etiology of neurodegenerative diseases. The characteristics of the zebrafish and the experimental approaches to which it is amenable make this species a useful complement to other animal models for the study of pathologic mechanisms of neurodegenerative diseases and for the screening of compounds with therapeutic potential.
Mutations in the human PTEN-induced kinase 1 (PINK1) gene are linked to recessive familial Parkinson's disease. Animal models of altered PINK1 function vary greatly in their phenotypic characteristics. Drosophila pink1 mutants exhibit mild dopaminergic neuron degeneration and locomotion defects. Such defects are not observed in mice with targeted null mutations in pink1, although these mice exhibit impaired dopamine release and synaptic plasticity. Here, we report that in zebrafish, morpholino-mediated knockdown of pink1 function did not cause large alterations in the number of dopaminergic neurons in the ventral diencephalon. However, the patterning of these neurons and their projections are perturbed. This is accompanied by locomotor dysfunction, notably impaired response to tactile stimuli and reduced swimming behaviour. All these defects can be rescued by expression of an exogenous pink1 that is not a target of the morpholinos used. These results indicate that normal PINK1 function during development is necessary for the proper positioning of populations of dopaminergic neurons and for the establishment of neuronal circuits in which they are implicated.
Spontaneous intracranial hemorrhage is a debilitating form of stroke, often leading to death or permanent cognitive impairment. Many of the causative genes and the underlying mechanisms implicated in developmental cerebral-vascular malformations are unknown. Recent in vitro and in vivo studies in mice have shown inhibition of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway to be effective in stabilizing cranial vessels. Using a combination of pharmacological and genetic approaches to specifically inhibit the HMGCR pathway in zebrafish (Danio rerio), we demonstrate a requirement for this metabolic pathway in developmental vascular stability. Here we report that inhibition of HMGCR function perturbs cerebral-vascular stability, resulting in progressive dilation of blood vessels, followed by vessel rupture, mimicking cerebral cavernous malformation (CCM)-like lesions in humans and murine models. The hemorrhages in the brain are rescued by prior exogenous supplementation with geranylgeranyl pyrophosphate (GGPP), a 20-carbon metabolite of the HMGCR pathway, required for the membrane localization and activation of Rho GTPases. Consistent with this observation, morpholino-induced depletion of the β-subunit of geranylgeranyltransferase I (GGTase I), an enzyme that facilitates the post-translational transfer of the GGPP moiety to the C-terminus of Rho family of GTPases, mimics the cerebral hemorrhaging induced by the pharmacological and genetic ablation of HMGCR. In embryos with cerebral hemorrhage, the endothelial-specific expression of cdc42, a Rho GTPase involved in the regulation of vascular permeability, was significantly reduced. Taken together, our data reveal a metabolic contribution to the stabilization of nascent cranial vessels, requiring protein geranylgeranylation acting downstream of the HMGCR pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.