Several nanocomposites were prepared by extrusion from a commercial metallocene-type isotactic polypropylene (iPP) and different amounts of two types of graphene (G) nanofibers: ones with a high specific surface, named GHS, and the others with a low specific surface, labeled as GLS. The number of graphene layers was found to be around eight for GLS and about five in the GHS. Scanning electron microscopy (SEM) images of the resultant iPP nanocomposites showed a better homogeneity in the dispersion of the GLS nanofibers within the polymeric matrix compared with the distribution observed for the GHS ones. Crystallinity in the nanocomposites turned out to be dependent upon graphene content and upon thermal treatment applied during film preparation, the effect of the nature of the nanofiber being negligible. Graphene exerted a noticeable nucleating effect in the iPP crystallization. Furthermore, thermal stability was enlarged, shifting to higher temperatures, with increasing nanofiber amount. The mechanical response changed significantly with nanofiber type, along with its content, together with the thermal treatment applied to the nanocomposites. Features of nanofiber surface played a key role in the ultimate properties related to superficial and bulk stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.