Abstract. Due to their heterogeneous nature, karst aquifers pose a major challenge for hydrogeological investigations. Important procedures like the delineation of catchment areas for springs are hindered by the unknown locations and hydraulic properties of highly conductive karstic zones.In this work numerical modeling was employed as a tool in delineating catchment areas of several springs within a karst area in southwestern Germany. For this purpose, different distributive modeling approaches were implemented in the finite element simulation software Comsol Multiphysics ® . The investigation focuses on the question to which degree the effect of karstification has to be taken into account for accurately simulating the hydraulic head distribution and the observed spring discharges.The results reveal that the representation of heterogeneities has a large influence on the delineation of the catchment areas. Not only the location of highly conductive elements but also their geometries play a major role for the resulting hydraulic head distribution and thus for catchment area delineation. The size distribution of the karst conduits derived from the numerical models agrees with knowledge from karst genesis. It was thus shown that numerical modeling is a useful tool for catchment delineation in karst aquifers based on results from different field observations.
Abstract. Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributed numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south-western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software COMSOL Multiphysics ® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is possible not only to derive a consistent flow and transport model for a 150 km 2 karst area but also to combine the use of groundwater flow and transport parameters thereby greatly reducing model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m 3 .
Abstract. Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributive numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software Comsol Multiphysics® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is not only possible to derive a consistent flow and transport model for a 150 km2 karst area, but that the combined use of groundwater flow and transport parameters greatly reduces model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m3.
Due to their heterogeneous nature, karst aquifers pose a major challenge for hydrogeological investigations. Important procedures like the delineation of catchment areas for springs are hindered by the unknown locations and hydraulic properties of highly conductive karstic zones.
In this work numerical modeling was employed as a tool in delineating catchment areas of several springs within a karst area in southwestern Germany. For this purpose, different distributive modeling approaches were implemented in the Finite Element simulation software Comsol Multiphysics®. The investigation focuses on the question to which degree the effect of karstification has to be taken into account for accurately simulating the hydraulic head distribution and the observed spring discharges.
The results reveal that the representation of heterogeneities has a large influence on the delineation of the catchment areas. Not only the location of highly conductive elements but also their geometries play a major role for the resulting hydraulic head distribution and thus for catchment area delineation. The size distribution of the karst conduits derived from the numerical models agrees with knowledge from karst genesis. It was thus shown that numerical modeling is a useful tool for catchment delineation in karst aquifers based on results from different field observations
Predicting and characterising groundwater flow and solute transport in engineering and hydrogeological applications, such as dimensioning tracer experiments, rely primarily on numerical modelling techniques. During software selection for numerical modelling, the accuracy of the results, financial costs of the simulation software, and computational resources should be considered. This study evaluates numerical modelling approaches and outlines the advantages and disadvantages of several simulators in terms of predictability, temporal control, and computational efficiency conducted in a single user and single computational resource set-up. A set of well-established flow and transport modelling simulators, such as MODFLOW/MT3DMS, FEFLOW, COMSOL Multiphysics, and DuMuX were tested and compared. These numerical simulators are based on three numerical discretisation schemes, i.e., finite difference (FD), finite element (FE), and finite volume (FV). The influence of dispersivity, potentially an artefact of numerical modelling (numerical dispersion), was investigated in parametric studies, and results are compared with analytical solutions. At the same time, relative errors were assessed for a complex field scale example. This comparative study reveals that the FE-based simulators COMSOL and FEFLOW show higher accuracy for a specific range of dispersivities under forced gradient conditions than DuMuX and MODFLOW/MT3DMS. FEFLOW performs better than COMSOL in regard to computational time both in single-core and multi-core computing. Overall computational time is lowest for the FD-based simulator MODFLOW/MT3DMS while the number of mesh elements is low (here < 12,800 elements). However, for finer discretisation, FE software FEFLOW performs faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.