Zintl phases are ideal candidates for efficient thermoelectric materials, because they are typically small‐bandgap semiconductors with complex structures. Furthermore, such phases allow fine adjustment of dopant concentration without disrupting electronic mobility, which is essential for optimizing thermoelectric material efficiency. The tunability of Zintl phases is demonstrated with the series CaxYb1–xZn2Sb2 (0 ≤ x ≤ 1). Measurements of the electrical conductivity, Hall mobility, Seebeck coefficient, and thermal conductivity (in the 300–800 K temperature range) show the compounds to behave as heavily doped semiconductors, with transport properties that can be systematically regulated by varying x. Within this series, x = 0 is the most metallic (lowest electrical resistivity, lowest Seebeck coefficient, and highest carrier concentration), and x = 1 is the most semiconducting (highest electrical resistivity, highest Seebeck coefficient, and lowest carrier concentration), while the mobility is largely independent of x. In addition, the structural disorder generated by the incorporation of multiple cations lowers the overall thermal conductivity significantly at intermediate compositions, increasing the thermoelectric figure of merit, zT. Thus, both zT and the thermoelectric compatibility factor (like zT, a composite function of the transport properties) can be finely tuned to allow optimization of efficiency in a thermoelectric device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.