The essentials of the synthetic chemistry of poly(organo)phosphazenes are detailed in this tutorial review, with a particular focus on the recent advances in this field.
Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.
The goal of human-on-a-chip systems is to capture multiorgan complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle, and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of noninvasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function, especially for chronic toxicity studies in vitro. The 28-day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology can be a relevant alternative to animal testing by monitoring multiorgan function upon long-term chemical exposure.
Photo-polymerizable scaffolds are designed and prepared via short chain poly(organo)phosphazene building blocks bearing glycine allylester moieties. The polyphosphazene was combined with a trifunctional thiol and divinylester in various ratios, followed by thiol-ene photo-polymerization to obtain porous matrices. Degradation studies under aqueous conditions showed increasing rates in correlation with the polyphosphazene content. Preliminary cell studies show the non-cytotoxic nature of the polymers and their degradation products, as well as the cell adhesion and proliferation of adipose-derived stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.