Background The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in host defense against infections. Disseminated infection caused by BCG vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected individuals, the etiology of disseminated BCG disease is unexplained. Methods We investigated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, requiring hematopoietic stem cell transplantation. We also studied two otherwise healthy adults with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic cells compartments in these three persons and sequenced candidate genes, mutation of which could plausibly confer susceptibility to BCG disease. Results We detected two distinct disease-causing mutations affecting the transcriptional regulator IRF8. Both K108A and T80A mutations impair IRF8 transcriptional activity by disrupting IRF8 interaction with DNA. Mutation K108E was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. Mutation T80A was associated with an autosomal dominant milder immunodeficiency and a selective depletion of CD11c+ CD1c+ circulating dendritic cells. Conclusions These findings define a new class of human primary immunodeficiency, affecting the differentiation of mononuclear phagocytes. They also demonstrate that human IRF8 is critically required for the development of monocytes and dendritic cells and for anti-mycobacterial immunity.
ISG15 is an interferon (IFN)-α/β-inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. We describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes — granulocytes in particular — reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of Nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ-inducing secreted molecule for optimal antimycobacterial immunity.
Neural tube defects (NTDs) are severe congenital malformations caused by failure of the neural tube to close during neurulation. Their etiology is complex involving both environmental and genetic factors. We have recently reported three mutations in the planar cell polarity gene VANGL1 associated with NTDs. The aim of the present study was to define the role of VANGL1 genetic variants in the development of NTDs in a large cohort of various ethnic origins. We identified five novel missense variants in VANGL1, p.Ser83Leu, p.Phe153Ser, p.Arg181Gln, p.Leu202Phe and p.Ala404Ser, occurring in sporadic and familial cases of spinal dysraphisms. All five variants affect evolutionary conserved residues and are absent from all controls analyzed. This study provides further evidence supporting the role of VANGL1 as a risk factor in the development of spinal NTDs.
Vangl2 was identified as the gene defective in the Looptail mouse model for neural tube defects (NTDs). This gene forms part of the planar cell polarity pathway, also called the non-canonical Frizzled/Dishevelled pathway, which mediates the morphogenetic process of convergent extension essential for proper gastrulation and neural tube formation in vertebrates. Genetic defects in PCP signaling have strongly been associated with NTDs in mouse models. To assess the role of VANGL2 in the complex etiology of NTDs in humans, we resequenced this gene in a large multiethnic cohort of 673 familial and sporadic NTD patients, including 453 open spina bifida and 202 closed spinal NTD cases. Six novel rare missense mutations were identified in 7 patients, five of which were affected with closed spinal NTDs. This suggests that VANGL2 mutations may predispose to NTDs in approximately 2.5% of closed spinal NTDs (5 in 202), at a frequency that is significantly different from that of 0.4% (2 in 453) detected in open spina bifida patients (P=0.027). Our findings strongly implicate VANGL2 in the genetic causation of spinal NTDs in a subset of patients and provide additional evidence for a pathogenic role of PCP signaling in these malformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.