Group B streptococcus (GBS) is the most important cause of neonatal sepsis, which is mediated in part by TLR2. However, GBS components that potently induce cytokines via TLR2 are largely unknown. We found that GBS strains of the same serotype differ in released factors that activate TLR2. Several lines of genetic and biochemical evidence indicated that lipoteichoic acid (LTA), the most widely studied TLR2 agonist in Gram-positive bacteria, was not essential for TLR2 activation. We thus examined the role of GBS lipoproteins in this process by inactivating two genes essential for bacterial lipoprotein (BLP) maturation: the prolipoprotein diacylglyceryl transferase gene (lgt) and the lipoprotein signal peptidase gene (lsp). We found that Lgt modification of the N-terminal sequence called lipobox was not critical for Lsp cleavage of BLPs. In the absence of lgt and lsp, lipoprotein signal peptides were processed by the type I signal peptidase. Importantly, both the Δlgt and the Δlsp mutant were impaired in TLR2 activation. In contrast to released factors, fixed Δlgt and Δlsp GBS cells exhibited normal inflammatory activity indicating that extracellular toxins and cell wall components activate phagocytes through independent pathways. In addition, the Δlgt mutant exhibited increased lethality in a model of neonatal GBS sepsis. Notably, LTA comprised little, if any, inflammatory potency when extracted from Δlgt GBS. In conclusion, mature BLPs, and not LTA, are the major TLR2 activating factors from GBS and significantly contribute to GBS sepsis.
The recognition of bacterial lipoproteins by toll‐like receptor (TLR) 2 is pivotal for inflammation initiation and control in many bacterial infections. TLR2‐dependent signalling is currently believed to essentially require both adaptor proteins MyD88 (myeloid differentiation primary response gene 88) and Mal/TIRAP (MyD88‐adapter‐like/TIR‐domain‐containing adaptor protein). TLR2‐dependent, but MyD88‐independent responses have not been described yet. We report here on a novel‐signalling pathway downstream of TLR2, which does not adhere to the established model. On stimulation of the TLR2/6 heterodimer with diacylated bacterial lipoproteins, Mal directly interacts with the regulatory subunit of phosphoinositide 3‐kinase (PI3K), p85α, in an inducible fashion. The Mal–p85α interaction drives PI3K‐dependent phosphorylation of Akt, phosphatidylinositol(3,4,5)P3 (PIP3) generation and macrophage polarization. MyD88 is not essential for PI3K activation and Akt phosphorylation; however, cooperates with Mal for PIP3 formation and accumulation at the leading edge. In contrast to TLR2/6, TLR2/1 does not require Mal or MyD88 for Akt phosphorylation. Hence, Mal specifically connects TLR2/6 to PI3K activation, PIP3 generation and macrophage polarization.
We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 A crystal structure of Kid reveals a 2-fold symmetric dimer that closely resembles the DNA gyrase-inhibitory toxin protein CcdB from E. coli F plasmid despite the lack of any notable sequence similarity. Analysis of nontoxic mutants of Kid suggests a target interaction interface associated with toxicity that is in marked contrast to that proposed for CcdB. A possible region for interaction of Kid with the antitoxin is proposed that overlaps with the target binding site and may explain the mode of antitoxin action.
The bacterial parD toxin-antitoxin system of plasmid R1 encodes two proteins, the Kid toxin and its cognate antitoxin, Kis. Kid cleaves RNA and inhibits protein synthesis and cell growth in Escherichia coli. Here, we show that Kid promotes RNA degradation and inhibition of protein synthesis in rabbit reticulocyte lysates. These new activities of the Kid toxin were counteracted by the Kis antitoxin and were not displayed by the KidR85W variant, which is nontoxic in E. coli. Moreover, while Kid cleaved single-and double-stranded RNA with a preference for UAA or UAC triplets, KidR85W maintained this sequence preference but hardly cleaved double-stranded RNA. Kid was formerly shown to inhibit DNA replication of the ColE1 plasmid. Here we provide in vitro evidence that Kid cleaves the ColE1 RNA II primer, which is required for the initiation of ColE1 replication. In contrast, KidR85W did not affect the stability of RNA II, nor did it inhibit the in vitro replication of ColE1. Thus, the endoribonuclease and the cytotoxic and DNA replication-inhibitory activities of Kid seem tightly correlated. We propose that the spectrum of action of this toxin extends beyond the sole inhibition of protein synthesis to control a broad range of RNA-regulated cellular processes.
The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.