Sound-induced vertigo can occur in cochlear implantees. This seems to be primarily caused by electrical costimulation of the sacculus as part of the otolith organs.
Objectives:
The HiFocus Mid-Scala electrode array (HFms) is designed to sit within the scala tympani without touching either the lateral wall or the modiolus. The aim of this study was to compare the HFms to the Helix perimodiolar electrode array.
Method:
Two groups of recipients with Helix (n = 22 ears) and HFms (n = 29 ears) electrode arrays were retrospectively identified and matched by age at implantation and duration of severe to profound deafness. Most comfortable listening levels (M), impedances, Freiburger Monosyllables in quiet, and Oldenburg sentences in adaptive noise were compared at 3, 6, and 12 months postimplant.
Results:
Median scores for monosyllables in quiet for the HFms group were significantly better than the Helix group at each test interval (p < 0.05). Speech perception in quiet also significantly improved from 3 to 12 months for both groups (p < 0.001). There was no significant difference between the groups for speech in noise. Impedances were significantly lower for the HFms group at 12 months (p < 0.05) except at the basal end and M levels were generally higher.
Conclusions:
The HFms group had better median performance for monosyllables in quiet than the Helix group at each test interval, although performance in noise was similar. For speech in noise, the HFms group appear to reach optimum performance quicker than the Helix group. Impedances were lower in the HFms group across the array, other than at the most basal end, and support our hypothesis that the HFms assumes a more lateral position within the cochlea than the Helix electrode, although our article did not include imaging data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.