Following RYGB and JIB, a pleiotropic endocrine response may contribute to the improved glycemic control, appetite reduction, and long-term changes in body weight.
Abstract-Carbon monoxide, which is generated in mammals during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator. Transition metal carbonyls have been recently shown to function as carbon monoxide-releasing molecules (CO-RMs) and to elicit distinct pharmacological activities in biological systems.In the present study, we report that a water-soluble form of CO-RM promotes cardioprotection in vitro and in vivo. Specifically, we found that tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) is stable in water at acidic pH but in physiological buffers rapidly liberates CO in solution. Cardiac cells pretreated with CORM-3 (10 to 50 mol/L) become more resistant to the damage caused by hypoxia-reoxygenation and oxidative stress. In addition, isolated hearts reperfused in the presence of CORM-3 (10 mol/L) after an ischemic event displayed a significant recovery in myocardial performance and a marked and significant reduction in cardiac muscle damage and infarct size. The cardioprotective effects mediated by CORM-3 in cardiac cells and isolated hearts were totally abolished by 5-hydroxydecanoic acid, an inhibitor of mitochondrial ATP-dependent potassium channels. Predictably, cardioprotection is lost when CORM-3 is replaced by an inactive form (iCORM-3) that is incapable of liberating CO. Using a model of cardiac allograft rejection in mice, we also found that treatment of recipients with CORM-3 but not iCORM-3 considerably prolonged the survival rate of transplanted hearts. These data corroborate the notion that transition metal carbonyls could be used as carriers to deliver CO and highlight the bioactivity and potential therapeutic features of CO-RMs in the mitigation of cardiac dysfunction. Key Words: transition metal carbonyls Ⅲ carbon monoxide-releasing molecules Ⅲ myocardial ischemia Ⅲ heart transplantation Ⅲ reperfusion injury M ammalian cells constantly generate carbon monoxide (CO) gas via the endogenous degradation of heme by a family of constitutive (HO-2) and inducible (HO-1) heme oxygenase enzymes. 1,2 Firstly described as a putative neural messenger, 3 CO is now regarded as a versatile signaling molecule having essential regulatory roles in a variety of physiological and pathophysiological processes that take place within the cardiovascular, nervous, and immune systems. Indeed, CO produced in the vessel wall by heme oxygenase enzymes possesses vasorelaxing properties and has been shown to prevent vasoconstriction and both acute and chronic hypertension through stimulation of soluble guanylate cyclase. 4 -10 Endogenous CO appears to modulate sinusoidal tone in the hepatic circulation, 11 control the proliferation of vascular smooth muscle cells 12 and suppress the rejection of transplanted hearts. 13 The biological action of heme oxygenase-derived CO is substantiated by the pharmacological effects observed when this gas is applied exogenously to in vitro and in vivo systems. At concentrations ranging from 10 to 500 ppm, CO gas has been reported to mediate potent antiinfl...
IntroductionAbdominal wall defects and incisional hernias represent a challenging problem. Currently, several commercially available biologic prostheses are used clinically for hernia repair. We compared the performance and efficacy of two non-crosslinked meshes in ventral hernia repair to two crosslinked prostheses in a rodent model.MethodsAnimals were divided into 12 groups (4 matrix types and 3 termination time-points per matrix). A ventral defect was carefully created and overlapped with the biologic prosthesis.ResultsMajor complications were seroma induction (3 mesh types), implant extrusion (1 mesh type), severe inflammatory and immune responses (non-crosslinked mesh), fibrosis and mineralisation (3 mesh types). After inflammation resolution, 3 of the matrices tested supported hernia healing but with marked tissue and temporal differences. AlloDerm®* and Surgisis Gold™ showed tissue reactivity with the host and a rapid rate of matrix remodelling. Bard CollaMend™* Implant proved to be inept for hernia repair under the conditions tested. Permacol™ biological implant integration with host tissue increased over time, supporting hernia healing with strength of tissue, and appears to be a safe prosthetic material for ventral hernia repair based on the results of this rodent study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.