The German COPD cohort comprises patients with advanced and less advanced COPD. This is particularly useful for studying the time course of COPD in relation to comorbidities. Baseline data indicate that COSYCONET offers the opportunity to investigate our research questions in a large-scale, high-quality dataset.
Adipokinetic hormone (AKH) peptides in insects serve the endocrine control of energy supply. They also produce, however, neuronal, vegetative, and motor effects, suggesting that AKHs orchestrate adaptive behavior by multiple actions. We have cloned, for Periplaneta americana, the AKH receptor to determine its localization and, based on current measurements in neurons and heterologous expression systems, the mechanisms of AKH actions. Apart from fat body, various neurons express the AKH receptor, among them abdominal dorsal unpaired median (DUM) neurons, which release the biogenic amine octopamine. They are part of the arousal system and are involved in the control of circulation and respiration. Both the two Periplaneta AKHs activate the Gs pathway, and AKH I also potently activates Gq. AKH I and--with much less efficacy--AKH II accelerate spiking of DUM neurons through an increase of the pacemaking Ca2+ current. Because the AKHs are released from the corpora cardiaca into the hemolymph, they must penetrate the blood-brain barrier for acting on neurons. That this happens was shown electrophysiologically by applying AKH I to an intact ganglion. Systemically injected AKH I stimulates locomotion potently in striking contrast to AKH II. This behavioral difference can be traced back conclusively to the different effectiveness of the AKHs on the level of G proteins. Our findings also show that AKHs act through the same basic mechanisms on neuronal and nonneuronal cells, and they support an integration of metabolic and neuronal effects in homoeostatic mechanisms.
ObjectiveIn large cohort studies comorbidities are usually self-reported by the patients. This way to collect health information only represents conditions known, memorized and openly reported by the patients. Several studies addressed the relationship between self-reported comorbidities and medical records or pharmacy data, but none of them provided a structured, documented method of evaluation. We thus developed a detailed procedure to compare self-reported comorbidities with information on comorbidities derived from medication inspection. This was applied to the data of the German COPD cohort COSYCONET.MethodsApproach I was based solely on ICD10-Codes for the diseases and the indications of medications. To overcome the limitations due to potential non-specificity of medications, Approach II was developed using more detailed information, such as ATC-Codes specific for one disease. The relationship between reported comorbidities and medication was expressed by a four-level concordance score.ResultsApproaches I and II demonstrated that the patterns of concordance scores markedly differed between comorbidities in the COSYCONET data. On average, Approach I resulted in more than 50% concordance of all reported diseases to at least one medication. The more specific Approach II showed larger differences in the matching with medications, due to large differences in the disease-specificity of drugs. The highest concordance was achieved for diabetes and three combined cardiovascular disorders, while it was substantial for dyslipidemia and hyperuricemia, and low for asthma.ConclusionBoth approaches represent feasible strategies to confirm self-reported diagnoses via medication. Approach I covers a broad spectrum of diseases and medications but is limited regarding disease-specificity. Approach II uses the information from medications specific for a single disease and therefore can reach higher concordance scores. The strategies described in a detailed and reproducible manner are generally applicable in large studies and might be useful to extract as much information as possible from the available data.
We studied whether in patients with stable COPD blood gases (BG), especially oxygenated hemoglobin (OxyHem) as a novel biomarker confer information on disease burden and prognosis and how this adds to the information provided by the comorbidity pattern and systemic inflammation. Data from 2137 patients (GOLD grades 1–4) of the baseline dataset of the COSYCONET COPD cohort were used. The associations with dyspnea, exacerbation history, BODE-Index (cut-off ≤2) and all-cause mortality over 3 years of follow-up were determined by logistic and Cox regression analyses, with sex, age, BMI and pack years as covariates. Predictive values were evaluated by ROC curves. Capillary blood gases included SaO2, PaO2, PaCO2, pH, BE and the concentration of OxyHem [haemoglobin (Hb) x fractional SaO2, g/dL] as a simple-to-measure correlate of oxygen content. Inflammatory markers were WBC, CRP, IL-6 and -8, TNF-alpha and fibrinogen, and comorbidities comprised a broad panel including cardiac and metabolic disorders. Among BG, OxyHem was associated with dyspnoea, exacerbation history, BODE-Index and mortality. Among inflammatory markers and comorbidities, only WBC and heart failure were consistently related to all outcomes. ROC analyses indicated that OxyHem provided information of a magnitude comparable to that of WBC, with optimal cut-off values of 12.5 g/dL and 8000/µL, respectively. Regarding mortality, OxyHem also carried independent, additional information, showing a hazard ratio of 2.77 (95% CI: 1.85–4.15, p < 0.0001) for values <12.5 g/dL. For comparison, the hazard ratio for WBC > 8000/µL was 2.33 (95% CI: 1.60–3.39, p < 0.0001). In stable COPD, the concentration of oxygenated hemoglobin provided additional information on disease state, especially mortality risk. OxyHem can be calculated from hemoglobin concentration and oxygen saturation without the need for the measurement of PaO2. It thus appears well suited for clinical use with minimal equipment, especially for GPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.