Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease without any effective therapy. To evaluate the potential of wild-type bone marrow (BM)-derived stem cells to modify the ALS phenotype, we generated BM chimeric Cu/Zn superoxide dismutase (SOD1) mice by transplantation of BM cells derived from mice expressing green fluorescent protein (GFP) in all tissues and from Thy1-YFP mice that express a spectral variant of GFP (yellow fluorescent protein) in neurons only. In the recipient cerebral cortex, we observed rare GFP+ and YFP+ neurons, which were probably generated by cell fusion, as demonstrated by fluorescence in situ hybridization (FISH) analysis, suggesting that this phenomenon is not limited to Purkinje cells. GFP-positive microglial cells were extensively present in both the brain and spinal cord of the affected animals. Completely differentiated and immature GFP+ myofibres were also present in the heart and skeletal muscles of SOD1 mice, confirming that BM cells can participate in striated muscle tissue regeneration. Moreover, wild-type BM chimeric SOD1 mice showed a significantly delayed disease onset and an increased life span, probably due to a positive 'non-neuronal environmental' effect rather than to neuronogenesis. This improvement in SOD1-G93A mouse survival is comparable with that previously obtained using some safer pharmacological agents. BM transplantation-related complications in humans preclude its clinical application for ALS treatment. However, our data suggest that further studies aimed at improving the degree of tissue chimerism by BM-derived cells may provide valuable insights into strategies to slow ALS progression.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of the motor neurons. We tested whether treatment of superoxide dismutase (SOD1)-G93A transgenic mouse, a model of ALS, with a neural stem cell subpopulation double positive for Lewis X and the chemokine receptor CXCR4 (LeX+CXCR4+) can modify the disease's progression. In vitro, after exposure to morphogenetic stimuli, LeX+CXCR4+ cells generate cholinergic motor neuron-like cells upon differentiation. LeX+CXCR4+ cells deriving from mice expressing Green Fluorescent Protein in all tissues or only in motor neurons, after a period of priming in vitro, were grafted into spinal cord of SOD1-G93A mice. Transplanted transgenic mice exhibited a delayed disease onset and progression, and survived significantly longer than non-treated animals by 23 days. Examination of the spinal cord revealed integration of donor-derived cells that differentiated mostly in neurons and in a lower proportion in motor neuron-like cells. Quantification of motor neurons of the spinal cord suggests a significant neuroprotection by LeX+CXCR4+ cells. Both VEGF- and IGF1-dependent pathways were significantly modulated in transplanted animals compared to controls, suggesting a role of these neurotrophins in MN protection. Our results support the therapeutic potential of neural stem cell fractions through both neurogenesis and growth factors release in motor neuron disorders.
Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.