The phytochemical resveratrol (trans-3,5,4'-trihydroxystilbene) has drawn great interest as health-promoting food ingredient and potential therapeutic agent. However, resveratrol shows vanishingly low water solubility; this limits its uptake and complicates the development of effective therapeutic forms. Glycosylation should be useful to enhance resveratrol solubility, with the caveat that unselective attachment of sugars could destroy the molecule's antioxidant activity. UGT71A15 (a uridine 5'-diphosphate α-D-glucose-dependent glucosyltransferase from apple) was used to synthesize resveratrol 3,5-β-D-diglucoside; this was about 1700-fold more water-soluble than the unglucosylated molecule (∼0.18 mM), yet retained most of the antioxidant activity. Resveratrol 3-β-D-glucoside, which is the naturally abundant form of resveratrol, was a practical substrate for perfect site-selective conversion into the target diglucoside in quantitative yield (g L concentration).
Sucrose synthase (SuSy) catalyzes in the presence of a pyrimidine or purine nucleoside diphosphate (NDP) the conversion of sucrose to the corresponding nucleotide‐activated derivative of glucose (NDP‐glucose). To realize the potential of SuSy for NDP‐glucose synthesis fully, a nucleoside monophosphate (NMP) should be employed in the reaction, for it is a much more cost‐effective substrate than NDP. Therefore we explored in this study the use of polyphosphate kinases (PPK) from class II and III of family 2 which catalyze in the presence of polyphosphate (polyP) the conversion of NMP into NDP. A biocatalytic cascade of PPK (from Meiothermus ruber) and SuSy (from Acidithiobacillus caldus) was established for NDP‐glucose production. The synthetic efficiency of the cascade reflected the NMP substrate specificity of the PPK, following the order of nucleoside monophosphate: adenosine (AMP)>guanosine (GMP)>cytidine (CMP)>uridine (UMP)>deoxy‐thymidine (dTMP). The efficiency was also influenced by the concentrations of magnesium (Mg2+) and polyphosphate (polyP) as well as by the pH. An optimized synthesis at 45 °C and pH 5.5 gave 81 mM (48 g L−1) ADP‐glucose from 100 mM AMP and 132 mM polyP in the presence of an excess of sucrose (1 M) and 25 mM Mg2+. The productivity was 2.0 g L−1 h−1 despite using an enzyme concentration of only 150 μg mL−1. Isolation of ADP‐glucose (∼99% purity) by anion‐exchange chromatography required prior removal of the polyP, which was achieved by fractional precipitation with ethanol. The herein developed coupling with PPK, to form the NDP substrate from NMP in situ, could be generally useful to advance NDP‐sugar synthesis by Leloir glycosyltransferases.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.