Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.
Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.