A 35-d experiment was conducted in broilers to study the effect of supplementation of sulfate or hydroxychloride forms of Zn and Cu at 2 supplemental Zn levels on growth performance, meat yield, and tissue levels of Zn. On day 0, 900 male Ross 308 broiler chicks (45 ± 1.10 g) were allocated to 4 treatments in a randomized complete block design and 2 × 2 factorial arrangement of treatments. The factors were 2 sources (sulfate or hydroxychloride) of Zn and Cu and 2 levels (low or high) of Zn. The Zn sources were zinc sulfate monohydrate (ZSM) or hydroxychloride Zn. Copper sources were copper (II) sulfate pentahydrate or hydroxychloride Cu. Each of the 4 treatments had 15 replicates and 15 birds per replicate. Birds were weighed on days 0, 21, and 35 for growth performance. On day 35, left tibia bone, liver, and blood were collected from 4 randomly selected birds per pen. In addition, 7 birds per pen were used for carcass evaluation. There was no significant source × level interaction on any of the growth performance response. Broiler chickens receiving hydroxychloride Zn and Cu had greater (P < 0.05) gain: feed, whereas broiler chickens receiving lower Zn level had greater (P < 0.01) weight gain. There was no source × level interaction on meat yield. Broiler chickens receiving hydroxychloride Zn and Cu had greater (P < 0.05) % breast yield than those receiving sulfate Zn and Cu. Higher level of Zn, irrespective of source, produced greater (P < 0.01) tibia and plasma Zn levels, whereas liver Cu was greater (P < 0.05) in broiler chickens receiving hydroxychloride Zn and Cu. It was concluded that hydroxychloride Zn and Cu were more efficacious than sulfate Zn and Cu in promoting growth performance and enhancing meat yield in the current study.
BackgroundThe present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips, differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis.ResultsL. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl (S)-lignin units were preferentially degraded than guaiacyl (G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio (wheat straw: r = −0.72, wood chips: r = −0.75) and selective lignin degradation (wheat straw: r = −0.69, wood chips: r = −0.88) were correlated with in vitro gas production (IVGP), a good indicator for rumen degradability.ConclusionsL. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.