Aberrant expression of the Evi1 (ecotropic virus integration site 1) proto-oncogene has been associated with hematopoietic malignancies in both mice and man. To determine the effect of enforced expression of Evi1 in vivo, we developed a transgenic mouse model utilizing the murine Sca-1 (Ly-6E.1) promoter. Here, we describe the generation and analysis of three independent lines of Evi1 transgenic mice. Transgenic animals of two founder lines developed normally. These mice did not show any obvious hematological abnormalities but showed a significant reduction in the number of bone marrow colony-forming unit erythroid (CFU-E)-derived colonies. This implies a defect of normal erythroid hematopoiesis affecting relatively late erythroid progenitor cells. We also show that when newborn Evi1 transgenic mice of these two lines were infected with Cas-Br-M MuLV, tumor incidence was greatly enhanced in comparison with nontransgenic littermates, indicating an increased susceptibility for leukemia development. Interestingly, analysis of a third founder line revealed that all male progeny consistently displayed severely impaired erythropoiesis with major defects in the bone marrow, spleen and peripheral blood. Taken together, our results present the first evidence of Evi1 disturbing normal erythropoiesis in vivo and provides evidence for cooperative potential of Evi1 in tumor progression. Leukemia (2000) 14, 1876-1884.
We recently demonstrated that the gene encoding the peripheral cannabinoid receptor (Cb2) may be a proto-oncogene involved in murine myeloid leukemias. We show here that Cb2 may have a role in hematopoietic development. RNAse protection analysis showed that Cb2 is normally expressed in spleen and thymus. Cb2 mRNA is also expressed in 45 of 51 cell lines of distinct hematopoietic lineages, ie, myeloid, macrophage, mast, B-lymphoid, T-lymphoid, and erythroid cells. The effect of the fatty acid anandamide, an endogenous ligand for cannabinoid receptors, on primary murine marrow cells and hematopoietic growth factor (HGF )-dependent cell lines was then investigated. In vitro colony cultures of normal mouse bone marrow cells showed anandamide to potentiate interleukin-3 (IL-3)–induced colony growth markedly. Whereas HGFs alone stimulate proliferation of the various cell lines in serum-free culture only weakly, anandamide enhances the proliferative response of the cell lines to HGFs profoundly. This was apparent for responses induced by IL-3, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and erythropoietin. Anandamide was already effective at concentrations as low as 0.1 to 0.3 μmol/L and plateau effects were reached at 0.3 to 3 μmol/L. The addition of anandamide as single growth factor had no effect. The costimulatory effect of anandamide was not evident when cells were cultured with fetal calf serum (FCS), suggesting that FCS contains anandamide or another ligand capable of activating the peripheral cannabinoid receptor. Other cannabinoid ligands did not enhance the proliferative responsiveness of hematopoietic cells to HGFs. Transfection experiments of Cb2 in myeloid 32D cells showed that anandamide specifically activates proliferation through activation of the peripheral cannabinoid receptor. Anandamide appears to be a novel and synergistic growth stimulator for hematopoietic cells.
Cb2 is a novel protooncogene encoding the peripheral cannabinoid receptor. Previous studies demonstrated that 2 distinct noncoding first exons exist: exon-1A and exon-1B, which both splice to proteincoding exon-2. We demonstrate that in retrovirally induced murine myeloid leukemia cells with proviral insertion in Cb2, exon-1B/exon-2 Cb2 messenger RNA levels have been increased, resulting in high receptor numbers. In myeloid leukemia cells without virus insertion in this locus, low levels of only exon-1A/exon-2 Cb2 transcripts were present and receptors could not be detected. To elucidate the function of Cb2 in myeloid leukemia cells, a set of in vitro experiments was carried out using 32D/G-CSF-R (granulocyte colony-stimulating factor receptor) cells transfected with exon-1B/exon-2 Cb2 complementary DNA and a myeloid cell line carrying a virus insertion in Cb2 (ie, NFS 78). We demonstrate that a major function of the Cb2 receptor is stimulation of migration as determined in a transwell assay. The cannabinoid receptors belong to the superfamily of 7-transmembrane G protein-coupled receptors (GPCRs). Several GPCRs have been shown to be involved in cell growth and oncogenesis as the result of aberrant expression. [5][6][7] Examples of GPCRs with transforming ability are the ␣1B-adrenergic, 8 thrombin, 9 and serotonin 1c receptors 10 and the receptor encoded by MAS oncogene. 11,12 Our previous observation that Cb2 is a common virus integration site suggests that aberrant expression of this 7-transmembrane receptor may be a critical event in transformation in certain cases of leukemia. 3 The protein-coding region of Cb2 is located on a single exon (exon-2) of approximately 4 kilobases. Recently we identified 2 distinct 5Ј noncoding exons (ie, exon-1A and exon-1B) previously designated exon-1 and exon-1Ј, respectively. 3 In the study presented here we first carried out experiments to investigate Cb2 messenger RNA (mRNA) transcripts and protein expression in leukemic cells with or without retroviral insertion in the Cb2 locus. Secondly, we performed studies to determine the function of the peripheral cannabinoid receptor when overexpressed in myeloid cells.GPCRs have been related to many functions, including cell proliferation, maturation, survival, apoptosis, or migration. 6,13,14 In the present study, we investigated the function of the peripheral cannabinoid receptor when overexpressed on myeloid cells (ie, 32D/G-CSF-R [granulocyte colony-stimulating factor receptor]) in which we overexpressed exon-1B/exon-2 Cb2 splice variant and a myeloid leukemia cell line containing a virus insertion in the Cb2 locus, NFS 78. We also wished to determine which of the large panel of Cb2 ligands that have been identified previously is the true agonist of the receptor. We investigated the effects of natural (␦ 8 24 ) cannabinoids. We show that 2-AG is the most potent agonist for the Cb2 receptor and that a major function of 2-AG is stimulation of migration. We further studied whether 2-AG acts as a chemotactic or chemokinetic age...
Cb2, the gene encoding the peripheral cannabinoid receptor, is located in a common virus integration site and is overex-pressed in retrovirally induced murine myeloid leukemias. Here we show that this G protein-coupled receptor (GPCR) is also aberrantly expressed in a high percentage of human acute myeloid leukemias. We investigated the mechanism of transformation by Cb2 and demonstrate that aberrant expression of this receptor on hematopoietic precursor cells results in distinct effects depending on the ligand used. Cb2-expressing myeloid precursors migrate upon stimulation by the endocannabinoid 2-arachidonoylglycerol and are blocked in neutrophilic differentiation upon exposure to another ligand, CP55940. Both effects depend on the activation of G(alphai) proteins and require the mitogen-induced extracellular kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. Down-regulation of cyclic adenosine monophosphate (cAMP) levels upon G(alphai) activation is important for migration induction but is irrelevant for the maturation arrest. Moreover, the highly conserved G protein-interacting DRY motif, present in the second intracellular loop of GPCRs, is critical for migration but unimportant for the differentiation block. This suggests that the Cb2-mediated differentiation block requires interaction of G(alphai) proteins with other currently unknown motifs. This indicates a unique mechanism by which a transforming GPCR, in a ligand-dependent manner, causes 2 distinct oncogenic effects: altered migration and block of neutrophilic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.