Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.
Reduced graphene oxide (rGO) is widely seen as the most promising route for the low-cost mass production of graphene for many applications ranging from ultrathin electrodes to structural nanocomposites. The Hummers and Marcano methods are the two most successful approaches for producing high-performance rGO, but have been criticized for producing toxic emissions. We have applied life cycle assessment methodology to evaluate the environmental impacts of both production routes for GO and rGO in the context of applications requiring bulk materials or thin coatings. We find no current obstacle to the industrial scale production of graphene arising from its environmental impact. The cumulative energy demand is found to have a cap value between 20.7 and 68.5 GJ/Kg, a relatively high value; impact in other categories (such as human toxicity or resource depletion) is lower, and materials inventory does not include critical/strategic materials other than graphite itself. Our study proposes 1 kg of graphene as functional unit, and an application-specific functional unit normalized by conductivity which show that Hummers production method is far more suitable for bulk applications of graphene, with lower embedded energy per kg of graphene production, while Marcano's production method is better suited for thin film electronic applications.
Graphene oxide (GO) and related materials are widely reported to enhance the photocatalytic activity of zinc oxide. However, the origin of the observed performance improvements remains elusive and studies contributing to a deeper understanding of this critical issue are largely missing. In this work, we have prepared a set of benchmark ZnO-GO hybrid materials in order to systematically put under closer scrutiny the influence of the surface chemistry of GO on the photocatalytic degradation of methylene blue. The set of ZnO-GO hybrids has been synthesized in an ultrasonication process involving ZnO nanoparticles obtained in a microwave synthesis process and GO with three distinct oxidation degrees, employed in three different loading fractions.Structural and physical-chemical characterization by XRD, FTIR, Raman, UV-Vis, photoluminescence and spectroscopy and XPS, consistently demonstrate the importance of the surface chemistry of GO for establishing photo-induced charge-transfer interface interactions with ZnO, facilitating the enhancement of the catalytic activity of the ZnO-GO catalyst. Optimized interface interactions thus enabled the design of a ZnO-GO catalyst exhibiting a conversion rate of 80% obtained in a time of 70 minutes and at a catalyst concentration of only 0.045 mg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.