Optical beams with periodic lattice structures have broadened the study of structured waves. In the present work, we generate spin-orbit entangled photon states with a lattice structure and use them in a remote state preparation protocol. We sequentially measure spatially-dependent correlation rates with an electron-multiplying intensified CCD camera and verify the successful remote preparation of spin-orbit states by performing pixel-wise quantum state tomography. Control of these novel structured waves in the quantum regime provides a method for quantum sensing and manipulation of periodic structures.
Spin-orbit entangled photon states with a 2D lattice structure are generated and implemented in a remote state preparation protocol. These novel structured waves provide a method for quantum sensing and manipulation of periodic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.