Cancer is a worldwide increasing burden and its therapy is often challenging and causes severe side effects in healthy tissue. If drugs are loaded into nanoparticles, side effects can be reduced, and efficiency can be increased via the enhanced permeability and retention effect. This effect is based on the fact that nanoparticles with sizes from 10 to 200 nm can accumulate in tumor tissue due to their leaky vasculature. In this work, we produced polycaprolactone (PCL) in the sizes 1.8, 5.4, and 13.6 kDa and were able to produce spherical shaped nanoparticles with mean diameters of 64 ± 19 nm out of the PCL5.4 and 45 ± 8 nm out of the PCL13.6 reproducibly. By encapsulation of paclitaxel the diameter of that nanoparticles did not increase, and we were able to encapsulate 73 ± 7 fmol paclitaxel per 1000 particles in the PCL5.4‐nanoparticles and 35 ± 8 fmol PTX per 1000 PCL13.6‐nanoparticles. Furthermore, we coupled the aptamer S15 to preformed PCL5.4‐nanoparticles resulting in particles with a hydrodynamic diameter of 153 nm. This offers the opportunity to use these nanoparticles for targeted drug delivery.
Aptamers are single-stranded oligonucleotides which can be used as alternative recognition elements for protein detection, because aptamers bind their targets with a high affinity similar to antibodies. Due to the targetinduced conformational changes of aptamers, these oligonucleotides can be applied in various biosensing platforms. In this work, aptamers directed against the vascular endothelial growth factor (VEGF) were used as a model system. VEGF plays a key role in physiological angiogenesis and vasculogenesis. Furthermore, VEGF is involved in the development and growth of cancer and other diseases like agerelated macular degeneration, rheumatoid arthritis, diabetes mellitus, and neurodegenerative disorders. Detecting the protein biomarker VEGF is therefore of great importance for medical research and diagnostics. In this research, VEGFbinding aptamers were investigated for the systematic development of a targetinduced dissociation (TID) assay utilizing thermophoresis and microarrays. The established aptamer-microarray allowed for the detection of 0.1 nM of VEGF. Furthermore, the systematic development of the TID method using the VEGF model protein could help to develop further TID assays for the detection of various protein biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.