Functional nutrition, which includes the consumption of fruit juices, has become the field of interest for those seeking a healthy lifestyle. Functional nutrition is also of great interest to the food industry, with the aims of improving human health and providing economic prosperity in a sustainable manner. The functional food sector is the most profitable part of the food industry, with a fast-growing market resulting from new sociodemographic trends (e.g., longer life expectancy, higher standard of living, better health care), which often includes sustainable concepts of food production. Therefore, the demand for hurdle technology in the food industry is growing, along with the consumption of minimally processed foods, not only because this approach inactivates microorganisms in food, but because it can also prolong the shelf life of food products. To preserve food products such as fruit juices, the hurdle technology approach often uses non-thermal methods as alternatives to pasteurization, which can cause a decrease in the nutritional value and quality of the food. Non-thermal technologies are often combined with different hurdles, such as antimicrobial additives, thermal treatment, and ultraviolet or pulsed light, to achieve synergistic effects and overall quality improvements in (functional) juices. Hence, hurdle technology could be a promising approach for the preservation of fruit juices due to its efficiency and low impact on juice quality and characteristics, although all processing parameters still require optimization.
In this study, green extraction methods—high voltage electrical discharges (HVED), pulsed electric field (PEF), and ultrasound-assisted extraction (UAE)—were compared in terms of extraction yield of total and individual polyphenolic compounds, as well as the antioxidant capacity of blueberry pomace extracts. All extractions were performed with methanol- and ethanol-based solvents. The highest total polyphenols content (TPC) (10.52 mg of gallic acid equivalent (GAE) per g of dry weight (dw)) and antioxidant activity (AA) (0.83 mmol TE/g dw) were obtained by PEF-assisted extraction in the ethanol-based solvent after 100 pulses and 20 kV/cm, which corresponds to an energy input of 41.03 kJ/kg. A total of eighteen individual polyphenols were identified in all investigated blueberry pomace extracts by high-performance liquid chromatography with the diode-array detector (HPLC-DAD) and liquid chromatography electrospray ionization tandem mass spectrometric (LC-(HESI)-MS/MS). The highest anthocyanin (1757.32 µg/g of dw) and flavanol (297.86 µg/g of dw) yields were obtained in the methanol-based solvent, while the highest phenolic acid (625.47 µg/g of dw) and flavonol (157.54 µg/g of dw) yields were obtained in the ethanol-based solvent by PEF-assisted extraction at the energy input of 41.03 kJ/kg. These results indicated that PEF is a promising green extraction method which can improve the blueberry pomace’s polyphenol extraction yield.
Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers’ growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.