BackgroundMulti-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster.ResultsWe performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains.ConclusionsHere we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-017-0335-8) contains supplementary material, which is available to authorized users.
Filamentous fungi are of major interest for biotechnological and pharmaceutical applications. This is due mainly to their ability to produce a wide variety of secondary metabolites, many of which are relevant as antibiotics. One of the most prominent examples is penicillin, a β-lactam antibiotic that is produced on the industrial scale by fermentation of P. chrysogenum. In recent years, the multisubunit protein complex velvet has been identified as one of the key regulators of fungal secondary metabolism and development. However, until recently, only a little has been known about how velvet mediates regulation at the molecular level. To address this issue, we performed ChIP-seq (chromatin immunoprecipitation in combination with next-generation sequencing) on and follow-up analysis of PcVelA, the core component of the velvet complex in P. chrysogenum. We demonstrate direct involvement of velvet in transcriptional control and present the putative methyltransferase PcLlmA as a new downstream factor and interaction partner of PcVelA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.