Predictive business process monitoring (PBPM) deals with predicting a process's future behavior based on historical event logs to support a process's execution. Many of the recent techniques utilize a machine-learned model to predict which event type is the next most likely. Beyond PBPM, prescriptive BPM aims at finding optimal actions based on considering relevant key performance indicators. Existing techniques are geared towards the outcome prediction and deal with alarms for interventions or interventions that do not represent process events. In this paper, we argue that the next event prediction is insufficient for practitioners. Accordingly, this research-in-progress paper proposes a technique for determining next best actions that represent process events. We conducted an intermediate evaluation to test the usefulness and the quality of our technique compared to the most frequently cited technique for predicting next events. The results show a higher usefulness for process participants than a next most likely event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.