Gamma-Al2O3, ZrO2, and TiO2 gold supported model catalysts have been synthesized by laser vaporization. Structural characterization using Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy experiments have shown that the gold clusters deposited on the different supports have similar distribution of size centered around 3 nm and are in the metallic state. However, X-ray photoemission measurements also indicate lower binding energies than the usual Au 4f(7/2) at 84.0 eV for both alumina and titania supported catalysts, indicating a modification of the electronic structure of the metal. One has taken benefit of these features to study the influence of the nature of the support toward CO oxidation activities without being hindered by particle size or gold oxidic species effects. By comparing the activities of the different catalysts, it is concluded that the nature of the support directly affects the activity of gold. The following tendency is observed: titania and zirconia are superior to alumina as supports, titania being slightly better than zirconia. From XPS and activity results we can conclude that the existence of negatively charged clusters is not the key point to explain the high activity observed for Au/ZrO2 and Au/TiO2 catalysts and also that metallic Au is the major catalytically active phase. Hence, due to their very nature, titania and to a less extent zirconia should participate to the catalytic process.
Bimetallic clusters, all containing gold, have been produced by laser vaporisation of bulk alloys followed by deposition of the formed clusters onto Al2O3 and TiO2 powders or flat silica supports. This technique allows a narrow size distribution of highly dispersed gold-based nanoparticles on powders and nanocrystalline structured thin films on 2D supports to be obtained. The catalytic performances of the as-obtained AuFe, AuNi, AuTi powdery catalysts have been studied in the PROX reaction and compared with those obtained in the oxidation of CO in the temperature range 25-300 degrees C. By comparing the activities of the different catalysts, it is concluded that the nature of the gold partner directly affects the activity of gold. The following tendency is observed: AuFe and AuNi have rather similar activities, significantly lower than that of AuTi. In this paper, we also present a first attempt to study reactivity of original self-supported systems. We show that significant CO oxidation reactivity can be obtained over unsupported nanoporous AuTi and PdAu thin films. By completely excluding the support effect, unsupported catalysts could provide a way of understanding the relevant catalytic mechanisms more easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.