Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at ‘off-target’ sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate ‘megaTAL’, in which the DNA binding region of a transcription activator-like (TAL) effector is used to ‘address’ a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.
Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it.
Homing endonucleases (HEs) can be used to induce targeted genome modification to reduce the fitness of pathogen vectors such as the malaria-transmitting Anopheles gambiae and to correct deleterious mutations in genetic diseases. We describe the creation of an extensive set of HE variants with novel DNA cleavage specificities using an integrated experimental and computational approach. Using computational modeling and an improved selection strategy, which optimizes specificity in addition to activity, we engineered an endonuclease to cleave in a gene associated with Anopheles sterility and another to cleave near a mutation that causes pyruvate kinase deficiency. In the course of this work we observed unanticipated context-dependence between bases which will need to be mechanistically understood for reprogramming of specificity to succeed more generally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.