BackgroundMulti-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure.MethodsWe redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds.ResultsOur findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3).ConclusionAdaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates.Trial registrationClinicalTrials.gov Identifier: NCT01342692.
Background Building tools to support personalized medicine needs to model medical decision-making. For this purpose, both expert and real world data provide a rich source of information. Currently, machine learning techniques are developing to select relevant variables for decision-making. Rather than using data-driven analysis alone, eliciting prior information from physicians related to their medical decision-making processes can be useful in variable selection. Our framework is electronic health records data on repeated dose adjustment of Irinotecan for the treatment of metastatic colorectal cancer. We propose a method that incorporates elicited expert weights associated with variables involved in dose reduction decisions into the Stochastic Search Variable Selection (SSVS), a Bayesian variable selection method, by using a power prior. Methods Clinician experts were first asked to provide numerical clinical relevance weights to express their beliefs about the importance of each variable in their medical decision making. Then, we modeled the link between repeated dose reduction, patient characteristics, and toxicities by assuming a logistic mixed-effects model. Simulated data were generated based on the elicited weights and combined with the observed dose reduction data via a power prior. We compared the Bayesian power prior-based SSVS performance to the usual SSVS in our case study, including a sensitivity analysis using the power prior parameter. Results The selected variables differ when using only expert knowledge, only the usual SSVS, or combining both. Our method enables one to select rare variables that may be missed using only the observed data and to discard variables that appear to be relevant based on the data but not relevant from the expert perspective. Conclusion We introduce an innovative Bayesian variable selection method that adaptively combines elicited expert information and real world data. The method selects a set of variables relevant to model medical decision process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.