Background: Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a central nervous system inflammatory disease.Objective: To describe the disease course of CLIPPERS.Design: A nationwide study was implemented to collect clinical, magnetic resonance imaging, cerebrospinal fluid, and brain biopsy specimen characteristics of patients with CLIPPERS.
Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.
Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host’s immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.
Biphenotypic sinonasal sarcoma (BSNS) is a locally aggressive tumor occurring in the sinonasal region. It harbors both myogenic and neural differentiation and is characterized by PAX3 rearrangement with MAML3 as the most frequent fusion partner, but the partner of PAX3 remains unidentified in a subset of cases. About 70 cases have been reported so far. In this study, we report a series of 41 cases with clinical, pathologic, and molecular description. Twenty-five (61%) patients were female individuals, and the median age was 49 years. Tumors arose predominantly in the nasal cavity and ethmoidal sinuses. Local recurrences occurred in 8 cases of the 25 (32%). Histologic features were characteristic of BSNS, with 5 cases showing focal rhabdomyoblastic differentiation. Immunohistochemistry showed a constant positivity of S100 protein and PAX3 and negativity of SOX10. MyoD1 was focally positive in 91% of cases, whereas only 20% were positive for myogenin. Molecular analysis showed a PAX3-MAML3 transcript in 37 cases (90%). RNA sequencing was performed in the 4 negative cases for PAX3-MAML3 fusion, and it showed that 1 case harbored a PAX3-FOXO1 fusion, as previously described in the literature, and 2 novel fusions: PAX3-WWTR1 fusion in 2 cases and PAX3-NCOA2 fusion in 1 case. RNA sequencing results were confirmed by fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, and Sanger sequencing. The PAX3-NCOA2-positive case showed focal rhabdomyoblastic differentiation. In conclusion, we report 2 novel fusions (PAX3-WWTR1 and PAX3-NCOA2) in BSNS and show that MyoD1 is more sensitive than myogenin for demonstrating myogenic differentiation in this tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.