International audienceThe oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, “shipworms”, i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea
Abstract:The ecological process of community assembly is described as the succession of three phases: colonization, regulation and segregation. Early colonization remains the least studied and quantified phase of assembly. In order to fill this gap, an approach combining in situ experiments and modelling was proposed to study colonization by a benthic macrofauna community in open microcosms containing a single, non-limiting resource. The experiment was three months long. A total of 51 taxa were observed in the microcosms, but data analyses of the species composition and abundances revealed that five species, Capitella spp., Gammaropsis maculata, Erichtionus punctatus, Nereiphylla paretti and Harmothoe mariannae, explained most of the observed variation in the assembly process. The population dynamics of these species were simulated taking into account functional traits that govern individual interactions. The dynamic model simulated a demographic stochasticity due to low population densities that result from the small size of the experimental microcosms. Using this combined approach of experiments and modelling, we showed that predation interactions alone can account for the abundances and species composition of primary consumers during the transient phase of early colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.