Cultivar mixtures slow polycyclic epidemics but may also affect the evolution of pathogen populations by diversifying the selection pressures exerted by their plant hosts at field scale. We compared the dynamics of natural populations of the fungal pathogen Zymoseptoria tritici in pure stands and in three binary mixtures of wheat cultivars (one susceptible cultivar and one cultivar carrying the recently broken‐down Stb16q gene) over two annual field epidemics. We combined analyses of population “size” based on disease severity, and of population “composition” based on changes in the frequency of virulence against Stb16q in seedling assays with more than 3000 strains. Disease reductions were observed in mixtures late in the epidemic, at the whole‐canopy scale and on both cultivars, suggesting the existence of a reciprocal protective effect. The three cultivar proportions in the mixtures (0.25, 0.5, and 0.75) modulated the decrease in (a) the size of the pathogen population relative to the two pure stands, (b) the size of the virulent subpopulation, and (c) the frequency of virulence relative to the pure stand of the cultivar carrying Stb16q. Our findings suggest that optimal proportions may differ slightly between the three indicators considered. We argue potential trade‐offs that should be taken into account when deploying a resistance gene in cultivar mixtures: between the dual objectives “efficacy” and “durability,” and between the “size” and “frequency” of the virulent subpopulation. Based on current knowledge, it remains unclear whether virulent subpopulation size or frequency has the largest influence on interepidemic virulence transmission.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand-kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC-UV-MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single-individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.