Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.
Novel species of fungi described in this study include those from various countries as follows: Australia: Apiognomonia lasiopetali on Lasiopetalum sp., Blastacervulus eucalyptorum on Eucalyptus adesmophloia, Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp., Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, Elsinoë eelemani on Melaleuca alternifolia, Elsinoë eucalyptigena on Eucalyptus kingsmillii, Elsinoë preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor, Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp., Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agave sp., Phlogicylindrium mokarei on Eucalyptus sp., Phyllosticta acaciigena on Acacia suaveolens, Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp., Readeriella lehmannii on Eucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri, Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp., Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae on Hakea sp., and Teichospora kingiae on Kingia australis. Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks, Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, and Synnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata. France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae, Rubikia evansii and Torula acaciae (all on Acacia koa). India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil. La Réunion: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena on Eucalyptus grandis × pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl. Eucalyptostroma gen. nov.) on Eucalyptus pel...
Signal transducer and activator of transcription 3 (STAT3) transcription factors are cytoplasmic proteins that induce gene activation in response to cytokine receptor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate to the nucleus, and activate specific target genes. This transcriptional activation by STAT3 proteins has been shown to require the recruitment of coactivators such as CREB-binding protein (CBP)/p300. In the present study, we show that steroid receptor coactivator 1, NcoA/SRC1a, originally identified as a nuclear receptor coactivator, also functions as a coactivator of STAT3 proteins. In coimmunoprecipitations, NcoA/SRC1a was found to associate with STAT3 following IL-6 stimulation of HepG2 hepatoma cells. Pull-down experiments indicated that the N-terminal part of NcoA/SRC1a associates with the activation domain of STAT3. Overexpression of NcoA/SRC1a or its SRC1e isoform enhanced transcriptional activation by STAT3 proteins in transient transfection experiments. This ability of NcoA/SRC1a to enhance STAT3 activity is dependent upon the presence of the CBP-interacting domain, activation domain 1. Using chromatin immunoprecipitation assays, we found that STAT3, NcoA/SRC1a, and CBP/p300 are simultaneously recruited to the p21 waf1 promoter following interleukin-6 stimulation. Taken together, these data suggest that CBP/p300 and NcoA/SRC1a may function in a common pathway to regulate STAT3 transcriptional activity. STAT31 proteins are cytoplasmic transcription factors that become phosphorylated on a single tyrosine residue (Tyr 705 ) by receptor-associated tyrosine kinases such as JAK kinases (1). Each STAT3 protein contains an Src homology 2 domain close to the C terminus that induces the formation of an active dimer upon Src homology 2 domain-phosphotyrosine interaction. Activated STAT3 transcription factors then translocate into the nucleus to activate target genes. Among these genes, STAT3 proteins can recognize a conserved element in the promoter of p21 waf1 and increase the mRNA expression of this cell cycle regulatory gene (2, 3). STAT3 is also required for the regulation of other genes such as c-myc, cyclin D1, Bcl2, Bcl-xL, and  2 -macroglobulin (4 -8). Thus, many STAT3 target genes are key components of the regulation of cell cycle progression from G 1 to S phase. Accordingly, STAT3 activation is often associated with cell growth or transformation, and disruption of the stat3 gene causes embryonic lethality around day E7.5 (9), confirming a role for STAT3 in cell survival and proliferation during embryonic development. Recent experiments also indicate that STAT3 transcription factors induce cell transformation and can be considered as oncogenes (5). Tumor-derived cell lines or samples from human cancer frequently contain activated forms of STAT3. Moreover, src-transformed cell lines exhibit activated STAT3, and co-expression of a dominant negative form of STAT3 is sufficient to block cell transformation by src (4, 10 -13). Inhibition of STAT3 transcription...
STAT transcription factors (signal transducers and activators of transcription) are cytoplasmic proteins that induce gene activation in response to cytokine receptor stimulation. Following tyrosine phosphorylation, STAT proteins translocate into the nucleus and activate specific target genes. We have previously reported that STAT3 activates the expression of the p21waf1 gene through its association with the NcoA/SRC1a and CBP coactivators. In this study, we explore the role of BRG1, a component of the SWI/SNF chromatin-remodeling complex, and the role of cdk9, a component of the elongation factor PTEFb, in the STAT3-mediated expression of p21waf1. We found using pull-down experiments and co-immunoprecipitation assays that both proteins associate with STAT3. Chromatin immunoprecipitation (ChIP) experiments indicate that STAT3 DNA binding results in histone H3 acetylation and BRG1 recruitment. Using Southern blot analysis, we found that the loading of BRG1 is followed by an increased accessibility of the proximal p21waf1 promoter and by the association of RNA polymerase II. As a next step, STAT3 then recruits the cdk9 kinase to phosphorylate the carboxy-terminal domain of the RNA polymerase at serine 2. Accordingly, the elongating form of the polymerase can be detected by ChIP experiments on the coding region of the gene, probably initiating mRNA synthesis. Therefore, STAT3 not only promotes the initiation of transcription but also regulates chromatin remodeling and transcription elongation through its interaction with BRG1 and cdk9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.