Due to limited space and resources, it can be difficult to train students on audiological procedures adequately. In the present study, we compared audiology training outcomes between a traditional approach and a recently developed immersive virtual reality (VR) approach in audiology students. Twenty-nine first-year audiology students participated in the study; 14 received traditional training (“TT group”), and 15 received the VR training (“VRT group”). Pre- and post-training evaluation included a 20-item test developed by an audiology educator. Post-training satisfaction and self-confidence were evaluated using Likert scales. Mean post-training test scores improved by 6.9±9.8 percentage points in the TT group and by 21.1±7.8 points in the VRT group; the improvement in scores was significant for both groups. After completing the traditional training, the TT group was subsequently trained with the VR system, after which mean scores further improved by 7.5 points; there was no significant difference in post-VR training scores between the TT and VRT groups. After training, the TT and VRT groups completed satisfaction and self-confidence questionnaires. Satisfaction and self-confidence ratings were significantly higher for the VR training group, compared to the traditional training group. Satisfaction ratings were “good” (4 on Likert scale) for 74% of the TT group and 100% of the VRT group. Self-confidence ratings were “good” for 71% of the TT group and 92% of the VRT group. These results suggest that a VR training approach may be an effective alternative or supplement to traditional training for audiology students.
Sonoporation using microbubble-assisted ultrasound increases the permeability of a biological barrier to therapeutic molecules. Application of this method to the round window membrane could improve the delivery of therapeutics to the inner ear. The aim of this study was to assess the safety of sonoporation of the round window membrane in a sheep model. To achieve this objective, we assessed auditory function and cochlear heating, and analysed the metabolomics profiles of perilymph collected after sonoporation, comparing them with those of the control ear in the same animal. Six normal-hearing ewes were studied, with one sonoporation ear and one control ear for each. A mastoidectomy was performed on both ears. On the sonoporation side, Vevo MicroMarker® microbubbles (MBs; VisualSonics—Fujifilm, Amsterdam, The Netherlands) at a concentration of 2 × 108 MB/mL were locally injected into the middle ear and exposed to 1.1 MHz sinusoidal ultrasonic waves at 0.3 MPa negative peak pressure with 40% duty cycle and 100 μs interpulse period for 1 min; this was repeated three times with 1 min between applications. The sonoporation protocol did not induce any hearing impairment or toxic overheating compared with the control condition. The metabolomic analysis did not reveal any significant metabolic difference between perilymph samples from the sonoporation and control ears. The results suggest that sonoporation of the round window membrane does not cause damage to the inner ear in a sheep model.
For French cochlear implant (CI) recipients, in-person clinical auditory rehabilitation is typically provided during the first few years post-implantation. However, this is often inconvenient, it requires substantial time resources and can be problematic when appointments are unavailable. In response, we developed a computer-based home training software (“French AngelSound™”) for French CI recipients. We recently conducted a pilot study to evaluate the newly developed French AngelSound™ in 15 CI recipients (5 unilateral, 5 bilateral, 5 bimodal). Outcome measures included phoneme recognition in quiet and sentence recognition in noise. Unilateral CI users were tested with the CI alone. Bilateral CI users were tested with each CI ear alone to determine the poorer ear to be trained, as well as with both ears (binaural performance). Bimodal CI users were tested with the CI ear alone, and with the contralateral hearing aid (binaural performance). Participants trained at home over a one-month period (10 hours total). Phonemic contrast training was used; the level of difficulty ranged from phoneme discrimination in quiet to phoneme identification in multi-talker babble. Unilateral and bimodal CI users trained with the CI alone; bilateral CI users trained with the poorer ear alone. Outcomes were measured before training (pre-training), immediately after training was completed (post-training), and one month after training was stopped (follow-up). For all participants, post-training CI-only vowel and consonant recognition scores significantly improved after phoneme training with the CI ear alone. For bilateral and bimodal CI users, binaural vowel and consonant recognition scores also significantly improved after training with a single CI ear. Follow-up measures showed that training benefits were largely retained. These preliminary data suggest that the phonemic contrast training in French AngelSound™ may significantly benefit French CI recipients and may complement clinical auditory rehabilitation, especially when in-person visits are not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.