The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care.
ABSTRACT:Lipophilic pollutants can accumulate in human white adipose tissue (WAT), and the consequences of this accumulation are still poorly understood. Cytochromes P450 (P450s) have recently been found in rat WAT and shown to be inducible through mechanisms similar to those in the liver. The aim of our study was to describe the cytochrome P450 pattern and their induction mechanisms in human WAT. Explants of subcutaneous and visceral WAT and primary culture of subcutaneous adipocytes were used as WAT models, and liver biopsies and primary culture of hepatocytes were used as liver models to characterize P450 expression in both tissues. The WAT and liver models were then treated with typical P450 inducers (rifampicin, phenobarbital, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and lipophilic pollutants (lindane, prochloraz, and chlorpyrifos), and the effects on P450 expression were studied. P450 expression was considerably lower in WAT than in the liver, except for CYP1B1 and CYP2U1, which were the most highly expressed adipose P450s in all individuals. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and prochloraz induced CYP1A1 and CYP1B1 expression in both tissues. The aryl hydrocarbon receptor was also present in WAT. In contrast, neither phenobarbital nor rifampicin treatment induced CYP2 or CYP3 mRNA in WAT, and constitutive androstane receptor and pregnane X receptor were almost undetectable. These results suggest that the mechanisms by which P450s of family 1 are regulated in the liver are also functional in human WAT, but those regulating CYP2 and CYP3 expression are not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.