In this paper, the equivalent circuit of the non-autonomous Josephson junction (JJ) is presented and the effect of the proper frequency on the phase φ is studied. We also study nonlinear resonance phenomena in the oscillations of a modified Josephson junction (MJJ). These oscillations are probed through a system of nonlinear differential equations and the multiple time scale method is employed to investigate all different types of resonance that occur. The results of primary, superharmonic and subharmonic resonances are obtained analytically. We show that the system exhibits hardening and softening behaviors, as well as hysteresis and amplitude hopping phenomena in primary and superharmonic resonances, and only the hysteresis phenomenon in subharmonic resonance. In addition, the stabilities and the steady state solutions in each type of resonances are kindly evaluated. The number of equilibrium points that evolve with time and their stabilities are also studied. Finally, the equations of motion are numerically integrated to check the correctness of analytical calculations. We further show that the dynamics of the MJJ is strongly influenced by its parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.